dataset of thermodynamic data for gwb programs dataset format: jul17 activity model: wateq4f fugacity model: peng-robinson * * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * This dataset is the thermodynamic database from Wateq4F, * for use with the GWB programs. The dataset has been compiled from * file wateq4f.dat from the PhreeqC 2.8 distribution. * * Dataset was compiled by Daniel Saalfeld and Craig Bethke, University of * Illinois, August 2003. * * * Notes: * * Log K values were calculated as a function of temperature using the * analytic method from PhreeqC, unless data for this method was not provided. * In that case, log K's were calculated versus temperture according to the * van't Hoff equation. * * All log K values reflect dissociation/dissolution/destruction reactions. * * The constants in the header section (Debye-Huckel A and B, pressures, C-CO2, * etc.) are taken from Wateq4F where available; otherwise, they are the default * GWB values. * * Redox reactions have been rebalanced in terms of O2(aq), rather than the * electron e-. * * Species O2 has been renamed O2(aq), as expected by the GWB programs. * * The reactions for redox couples have been rebalanced in terms of basis species, * as expected by the GWB programs. * * Reactions for aqueous species, minerals, and gases have been rebalanced in * terms of basis species and redox species. * * Species' names have been converted to the GWB format. For example, Ca++ replaces * Ca+2. * * Humate and Fulvate which are organic species that do not have a specific chemical * formula. For this reason, the species have been added to the "elements" section, * to allow the GWB programs to determine their mole weights. * * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * temperatures 0.0000 12.5000 25.0000 40.0000 55.0000 70.0000 85.0000 100.0000 * pressures 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 * debye huckel a (adh) .4911 .4993 .5093 .5235 .5399 .5584 .5788 .6023 * debye huckel b (bdh) .3247 .3264 .3283 .3308 .3335 .3364 .3393 .3427 * bdot .0174 .0341 .0410 .0434 .0439 .0443 .0451 .0460 * c co2 1 .1224 .1184 .1127 .1045 .09605 .08865 .08322 .08018 * c co2 2 -.004679 -.009611 -.01049 -.008255 -.004718 -.001786 -.0006015 -.001503 * c co2 3 -.0004114 .001267 .001545 .001003 .0002834 -.0001328 -5.197e-5 .0005009 * c co2 4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 * c h2o 1 1.4203 1.4371 1.4540 1.4742 1.4944 1.5147 1.5349 1.5551 * c h2o 2 .01765 .0200 .02236 .02518 .02801 .03083 .03365 .03648 * c h2o 3 .01038 .009879 .00938 .008785 .008193 .007604 .007018 .006437 * c h2o 4 -.0004772 -.0005067 -.0005362 -.0005716 -.000607 -.0006424 -.0006778 -.0007132 35 elements Silver (Ag) mole wt.= 107.8680 g Aluminum (Al) mole wt.= 26.9815 g Arsenic (As) mole wt.= 74.9216 g Boron (B ) mole wt.= 10.8100 g Barium (Ba) mole wt.= 137.3400 g Bromine (Br) mole wt.= 79.9040 g Carbon (C ) mole wt.= 12.0111 g Calcium (Ca) mole wt.= 40.0800 g Cadmium (Cd) mole wt.= 112.4000 g Chlorine (Cl) mole wt.= 35.4530 g Cesium (Cs) mole wt.= 132.9050 g Copper (Cu) mole wt.= 63.5460 g Fluorine (F ) mole wt.= 18.9984 g Iron (Fe) mole wt.= 55.8470 g Fulvate (Fu) mole wt.= 650.0000 g Hydrogen (H ) mole wt.= 1.0080 g Humate (Hu) mole wt.= 2000.0000 g Iodine (I ) mole wt.= 126.9044 g Potassium (K ) mole wt.= 39.1020 g Lithium (Li) mole wt.= 6.9390 g Magnesium (Mg) mole wt.= 24.3120 g Manganese (Mn) mole wt.= 54.9380 g Nitrogen (N ) mole wt.= 14.0067 g Sodium (Na) mole wt.= 22.9898 g Nickel (Ni) mole wt.= 58.7100 g Oxygen (O ) mole wt.= 16.0000 g Phosphorus (P ) mole wt.= 30.9738 g Lead (Pb) mole wt.= 207.1900 g Rubidium (Rb) mole wt.= 85.4700 g Sulfur (S ) mole wt.= 32.0640 g Selenium (Se) mole wt.= 78.9600 g Silicon (Si) mole wt.= 28.0843 g Strontium (Sr) mole wt.= 87.6200 g Uranium (U ) mole wt.= 238.0290 g Zinc (Zn) mole wt.= 65.3700 g -end- 36 basis species H2O charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 18.0160 g 2 elements in species 2.000 H 1.000 O Ag+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 107.8680 g 1 elements in species 1.000 Ag Al+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 26.9815 g 1 elements in species 1.000 Al Ba++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 137.3400 g 1 elements in species 1.000 Ba Br- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 79.9040 g 1 elements in species 1.000 Br Ca++ charge= 2 ion size= 5.0 A b= .1650 mole wt.= 40.0800 g 1 elements in species 1.000 Ca Cd++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 112.4000 g 1 elements in species 1.000 Cd Cl- charge= -1 ion size= 3.5 A b= .0150 mole wt.= 35.4530 g 1 elements in species 1.000 Cl CO3-- charge= -2 ion size= 5.4 A b= 0.0000 mole wt.= 60.0111 g 2 elements in species 1.000 C 3.000 O Cs+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 132.9050 g 1 elements in species 1.000 Cs Cu++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 63.5460 g 1 elements in species 1.000 Cu F- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 18.9984 g 1 elements in species 1.000 F Fe++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 55.8470 g 1 elements in species 1.000 Fe Fulvate-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 650.0000 g 1 elements in species 1.000 Fu H+ charge= 1 ion size= 9.0 A b= 0.0000 mole wt.= 1.0080 g 1 elements in species 1.000 H H3AsO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 141.9456 g 3 elements in species 1.000 As 3.000 H 4.000 O H3BO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 61.8340 g 3 elements in species 1.000 B 3.000 H 3.000 O H4SiO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 96.1163 g 3 elements in species 4.000 H 4.000 O 1.000 Si Humate-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 2000.0000 g 1 elements in species 1.000 Hu I- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 126.9044 g 1 elements in species 1.000 I K+ charge= 1 ion size= 3.5 A b= .0150 mole wt.= 39.1020 g 1 elements in species 1.000 K Li+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 6.9390 g 1 elements in species 1.000 Li Mg++ charge= 2 ion size= 5.5 A b= .2000 mole wt.= 24.3120 g 1 elements in species 1.000 Mg Mn++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 54.9380 g 1 elements in species 1.000 Mn Na+ charge= 1 ion size= 4.0 A b= .0750 mole wt.= 22.9898 g 1 elements in species 1.000 Na Ni++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 58.7100 g 1 elements in species 1.000 Ni NO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 62.0067 g 2 elements in species 1.000 N 3.000 O O2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 32.0000 g 1 elements in species 2.000 O Pb++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 207.1900 g 1 elements in species 1.000 Pb PO4--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 94.9738 g 2 elements in species 4.000 O 1.000 P Rb+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 85.4700 g 1 elements in species 1.000 Rb SeO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 142.9600 g 2 elements in species 4.000 O 1.000 Se SO4-- charge= -2 ion size= 5.0 A b= -.0400 mole wt.= 96.0640 g 2 elements in species 4.000 O 1.000 S Sr++ charge= 2 ion size= 5.3 A b= .1210 mole wt.= 87.6200 g 1 elements in species 1.000 Sr UO2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 270.0290 g 2 elements in species 2.000 O 1.000 U Zn++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 65.3700 g 1 elements in species 1.000 Zn -end- 16 redox couples CH4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 16.0431 g 4 species in reaction 1.000 H2O 1.000 CO3-- 2.000 H+ -2.000 O2(aq) 145.0792 137.7780 131.0890 123.7671 117.1145 111.0436 105.4812 100.3660 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Cu+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 63.5460 g 4 species in reaction .500 H2O 1.000 Cu++ -1.000 H+ -.250 O2(aq) 21.1713 19.9338 18.8000 17.5589 16.4313 15.4023 14.4595 13.5925 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Fe+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 55.8470 g 4 species in reaction 1.000 Fe++ -.500 H2O 1.000 H+ .250 O2(aq) -10.1112 -9.2704 -8.5000 -7.6567 -6.8906 -6.1914 -5.5508 -4.9617 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components H2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 2.0160 g 2 species in reaction 1.000 H2O -.500 O2(aq) 50.5933 48.2953 46.1900 43.8855 41.7917 39.8809 38.1302 36.5203 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components H2S charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 34.0800 g 3 species in reaction 2.000 H+ -2.000 O2(aq) 1.000 SO4-- 145.2110 138.0638 131.5160 124.3486 117.8365 111.8936 106.4486 101.4413 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components HSe- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 79.9680 g 3 species in reaction 1.000 SeO4-- 1.000 H+ -2.000 O2(aq) 117.4751 108.0369 99.3900 89.9250 81.3253 73.4774 66.2869 59.6745 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Mn+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 54.9380 g 4 species in reaction -.500 H2O 1.000 H+ .250 O2(aq) 1.000 Mn++ 3.4602 3.7367 3.9900 4.2673 4.5192 4.7491 4.9598 5.1535 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MnO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 118.9380 g 4 species in reaction 1.500 H2O -3.000 H+ 1.250 O2(aq) 1.000 Mn++ 20.7696 20.4849 20.2240 19.9385 19.6790 19.4423 19.2254 19.0259 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MnO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 118.9380 g 4 species in reaction 2.000 H2O -4.000 H+ 1.000 O2(aq) 1.000 Mn++ 33.3817 32.8485 32.3600 31.8253 31.3394 30.8961 30.4898 30.1163 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components N2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 28.0134 g 4 species in reaction -1.000 H2O 2.000 H+ -2.500 O2(aq) 2.000 NO3- 9.7868 8.9169 8.1200 7.2477 6.4551 5.7318 5.0692 4.4597 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NH4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 18.0387 g 4 species in reaction 1.000 H2O 2.000 H+ -2.000 O2(aq) 1.000 NO3- 58.6193 55.7300 53.0830 50.1855 47.5529 45.1505 42.9493 40.9251 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NO2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 46.0067 g 2 species in reaction -.500 O2(aq) 1.000 NO3- 16.0556 15.2281 14.4700 13.6402 12.8862 12.1982 11.5677 10.9880 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components SeO3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 126.9600 g 2 species in reaction 1.000 SeO4-- -.500 O2(aq) 17.3053 14.9457 12.7840 10.4177 8.2678 6.3059 4.5082 2.8551 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components U+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 238.0290 g 4 species in reaction -.500 H2O 1.000 UO2++ 1.000 H+ -.750 O2(aq) 70.4250 67.2369 64.3160 61.1188 58.2138 55.5629 53.1340 50.9003 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components U++++ charge= 4 ion size= 0.0 A b= 0.0000 mole wt.= 238.0290 g 4 species in reaction -1.000 H2O 1.000 UO2++ 2.000 H+ -.500 O2(aq) 36.2115 35.0574 34.0000 32.8426 31.7910 30.8313 29.9521 29.1435 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components UO2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 270.0290 g 4 species in reaction .500 H2O 1.000 UO2++ -1.000 H+ -.250 O2(aq) 22.0693 21.0050 20.0300 18.9627 17.9930 17.1081 16.2973 15.5517 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components -end- 308 aqueous species (UO2)2(OH)2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 574.0740 g 3 species in reaction 2.000 H2O 2.000 UO2++ -2.000 H+ 6.3063 5.9481 5.6200 5.2608 4.9345 4.6367 4.3638 4.1129 * used van't Hoff equation to compute logKs (UO2)2OH+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 557.0660 g 3 species in reaction 1.000 H2O 2.000 UO2++ -1.000 H+ 2.7000 2.7000 2.7000 2.7000 2.7000 2.7000 2.7000 2.7000 * used van't Hoff equation to compute logKs (UO2)3(CO3)6------ charge= -6 ion size= 0.0 A b= 0.0000 mole wt.= 1170.1536 g 2 species in reaction 6.000 CO3-- 3.000 UO2++ -54.0000 -54.0000 -54.0000 -54.0000 -54.0000 -54.0000 -54.0000 -54.0000 * used van't Hoff equation to compute logKs (UO2)3(OH)4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 878.1190 g 3 species in reaction 4.000 H2O 3.000 UO2++ -4.000 H+ 11.9000 11.9000 11.9000 11.9000 11.9000 11.9000 11.9000 11.9000 * used van't Hoff equation to compute logKs (UO2)3(OH)5+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 895.1270 g 3 species in reaction 5.000 H2O 3.000 UO2++ -5.000 H+ 17.2322 16.3543 15.5500 14.6696 13.8697 13.1397 12.4709 11.8559 * used van't Hoff equation to compute logKs (UO2)3(OH)7- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 929.1430 g 3 species in reaction 7.000 H2O 3.000 UO2++ -7.000 H+ 31.0000 31.0000 31.0000 31.0000 31.0000 31.0000 31.0000 31.0000 * used van't Hoff equation to compute logKs (UO2)4(OH)7+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 1199.1720 g 3 species in reaction 7.000 H2O 4.000 UO2++ -7.000 H+ 21.9000 21.9000 21.9000 21.9000 21.9000 21.9000 21.9000 21.9000 * used van't Hoff equation to compute logKs Ag(HS)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 174.0120 g 3 species in reaction 1.000 Ag+ 2.000 H2S -2.000 H+ -3.7465 -4.2006 -4.5666 -4.9044 -5.1459 -5.3037 -5.3883 -5.4086 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Ag(NO2)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 199.8814 g 2 species in reaction 1.000 Ag+ 2.000 NO2- -2.2200 -2.2200 -2.2200 -2.2200 -2.2200 -2.2200 -2.2200 -2.2200 * used van't Hoff equation to compute logKs Ag(OH)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 141.8840 g 3 species in reaction 2.000 H2O 1.000 Ag+ -2.000 H+ 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 24.0000 * used van't Hoff equation to compute logKs Ag(S4)2--- charge= -3 ion size= 22.0 A b= 0.0000 mole wt.= 171.9960 g 3 species in reaction 1.000 Ag+ 2.000 H2S -4.000 H+ 13.7125 13.2584 12.8924 12.5546 12.3131 12.1553 12.0707 12.0504 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Ag(S4)S5--- charge= -3 ion size= 24.0 A b= 0.0000 mole wt.= 171.9960 g 3 species in reaction 1.000 Ag+ 2.000 H2S -4.000 H+ 14.0235 13.5694 13.2034 12.8656 12.6241 12.4663 12.3817 12.3614 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AgBr charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 187.7720 g 2 species in reaction 1.000 Ag+ 1.000 Br- -4.2400 -4.2400 -4.2400 -4.2400 -4.2400 -4.2400 -4.2400 -4.2400 * used van't Hoff equation to compute logKs AgBr2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 267.6760 g 2 species in reaction 1.000 Ag+ 2.000 Br- -7.2800 -7.2800 -7.2800 -7.2800 -7.2800 -7.2800 -7.2800 -7.2800 * used van't Hoff equation to compute logKs AgBr3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 347.5800 g 2 species in reaction 1.000 Ag+ 3.000 Br- -8.7100 -8.7100 -8.7100 -8.7100 -8.7100 -8.7100 -8.7100 -8.7100 * used van't Hoff equation to compute logKs AgCl charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 143.3210 g 2 species in reaction 1.000 Ag+ 1.000 Cl- -3.4498 -3.3560 -3.2700 -3.1759 -3.0904 -3.0124 -2.9409 -2.8752 * used van't Hoff equation to compute logKs AgCl2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 178.7740 g 2 species in reaction 1.000 Ag+ 2.000 Cl- -5.5336 -5.3961 -5.2700 -5.1320 -5.0066 -4.8922 -4.7874 -4.6910 * used van't Hoff equation to compute logKs AgCl3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 214.2270 g 2 species in reaction 1.000 Ag+ 3.000 Cl- -5.2900 -5.2900 -5.2900 -5.2900 -5.2900 -5.2900 -5.2900 -5.2900 * used van't Hoff equation to compute logKs AgCl4--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 249.6800 g 2 species in reaction 1.000 Ag+ 4.000 Cl- -5.5100 -5.5100 -5.5100 -5.5100 -5.5100 -5.5100 -5.5100 -5.5100 * used van't Hoff equation to compute logKs AgF charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 126.8664 g 2 species in reaction 1.000 Ag+ 1.000 F- -.5499 -.4508 -.3600 -.2606 -.1704 -.0880 -.0125 .0569 * used van't Hoff equation to compute logKs AgFulvate- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 757.8680 g 2 species in reaction 1.000 Fulvate-- 1.000 Ag+ -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 * used van't Hoff equation to compute logKs AgHS charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 140.9400 g 3 species in reaction 1.000 Ag+ 1.000 H2S -1.000 H+ -6.6982 -6.9253 -7.1083 -7.2772 -7.3980 -7.4769 -7.5192 -7.5293 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AgHS(S4)-- charge= -2 ion size= 15.0 A b= 0.0000 mole wt.= 173.0040 g 3 species in reaction 1.000 Ag+ 2.000 H2S -3.000 H+ 4.2735 3.8194 3.4534 3.1156 2.8741 2.7163 2.6317 2.6114 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AgHumate- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 2107.8680 g 2 species in reaction 1.000 Humate-- 1.000 Ag+ -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 -2.4000 * used van't Hoff equation to compute logKs AgI charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 234.7724 g 2 species in reaction 1.000 I- 1.000 Ag+ -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 -6.6000 * used van't Hoff equation to compute logKs AgI2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 361.6768 g 2 species in reaction 2.000 I- 1.000 Ag+ -10.6800 -10.6800 -10.6800 -10.6800 -10.6800 -10.6800 -10.6800 -10.6800 * used van't Hoff equation to compute logKs AgI3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 488.5812 g 2 species in reaction 3.000 I- 1.000 Ag+ -15.1833 -14.2370 -13.3700 -12.4210 -11.5587 -10.7718 -10.0508 -9.3878 * used van't Hoff equation to compute logKs AgI4--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 615.4856 g 2 species in reaction 4.000 I- 1.000 Ag+ -14.0800 -14.0800 -14.0800 -14.0800 -14.0800 -14.0800 -14.0800 -14.0800 * used van't Hoff equation to compute logKs AgNO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 169.8747 g 2 species in reaction 1.000 Ag+ 1.000 NO3- .2900 .2900 .2900 .2900 .2900 .2900 .2900 .2900 * used van't Hoff equation to compute logKs AgOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 124.8760 g 3 species in reaction 1.000 H2O 1.000 Ag+ -1.000 H+ 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 12.0000 * used van't Hoff equation to compute logKs AgSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 203.9320 g 2 species in reaction 1.000 Ag+ 1.000 SO4-- -1.1900 -1.2422 -1.2900 -1.3423 -1.3898 -1.4332 -1.4730 -1.5095 * used van't Hoff equation to compute logKs Al(OH)2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 60.9975 g 3 species in reaction 1.000 Al+++ 2.000 H2O -2.000 H+ 11.9602 10.9827 10.1087 9.1780 8.3582 7.6337 6.9913 6.4205 * used analytic equation to compute logKs Al(OH)3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 19.7429 18.2497 16.9404 15.5776 14.4095 13.4073 12.5477 11.8110 * used analytic equation to compute logKs Al(OH)4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 95.0135 g 3 species in reaction 1.000 Al+++ 4.000 H2O -4.000 H+ 25.5284 24.0279 22.6651 21.1877 19.8594 18.6601 17.5732 16.5844 * used analytic equation to compute logKs Al(SO4)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 219.1095 g 2 species in reaction 1.000 Al+++ 2.000 SO4-- -4.7914 -4.9002 -5.0000 -5.1092 -5.2084 -5.2989 -5.3819 -5.4582 * used van't Hoff equation to compute logKs AlF++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 45.9799 g 2 species in reaction 1.000 Al+++ 1.000 F- -6.9289 -6.9660 -7.0000 -7.0372 -7.0710 -7.1019 -7.1302 -7.1562 * used van't Hoff equation to compute logKs AlF2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 64.9783 g 2 species in reaction 1.000 Al+++ 2.000 F- -12.5672 -12.6365 -12.7000 -12.7695 -12.8327 -12.8903 -12.9431 -12.9917 * used van't Hoff equation to compute logKs AlF3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 83.9767 g 2 species in reaction 1.000 Al+++ 3.000 F- -16.6551 -16.7307 -16.8000 -16.8758 -16.9447 -17.0076 -17.0652 -17.1182 * used van't Hoff equation to compute logKs AlF4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 102.9751 g 2 species in reaction 1.000 Al+++ 4.000 F- -19.2524 -19.3294 -19.4000 -19.4772 -19.5474 -19.6115 -19.6701 -19.7241 * used van't Hoff equation to compute logKs AlHSO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 124.0535 g 3 species in reaction 1.000 Al+++ 1.000 H+ 1.000 SO4-- -2.2381 -2.3357 -2.4478 -2.5980 -2.7623 -2.9380 -3.1229 -3.3153 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AlOH++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 43.9895 g 3 species in reaction 1.000 Al+++ 1.000 H2O -1.000 H+ 5.7493 5.3657 5.0029 4.5921 4.2051 3.8396 3.4933 3.1644 * used analytic equation to compute logKs AlSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 123.0455 g 2 species in reaction 1.000 Al+++ 1.000 SO4-- -3.3464 -3.4265 -3.5000 -3.5804 -3.6535 -3.7201 -3.7812 -3.8374 * used van't Hoff equation to compute logKs As3S4(HS)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 419.1648 g 5 species in reaction -12.000 H2O 3.000 H3AsO4 3.000 H2 6.000 H2S -1.000 H+ -101.3545 -99.7677 -98.1639 -96.2198 -94.2571 -92.2782 -90.2853 -88.2799 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AsO3--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 122.9216 g 4 species in reaction -1.000 H2O 1.000 H3AsO4 1.000 H2 -3.000 H+ 16.5249 16.7989 17.0500 17.3248 17.5745 17.8024 18.0112 18.2032 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components AsO4--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 138.9216 g 2 species in reaction 1.000 H3AsO4 -3.000 H+ 21.3402 21.2200 21.1100 20.9895 20.8801 20.7802 20.6887 20.6046 * used van't Hoff equation to compute logKs AsS(OH)(HS)- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 157.0656 g 5 species in reaction -3.000 H2O 1.000 H3AsO4 1.000 H2 2.000 H2S -1.000 H+ -27.7182 -27.1892 -26.6546 -26.0066 -25.3524 -24.6927 -24.0284 -23.3600 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components BaCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 197.3511 g 2 species in reaction 1.000 CO3-- 1.000 Ba++ -2.4951 -2.6042 -2.7132 -2.8440 -2.9748 -3.1056 -3.2364 -3.3672 * used analytic equation to compute logKs BaHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 198.3591 g 3 species in reaction 1.000 CO3-- 1.000 Ba++ 1.000 H+ -11.2685 -11.2680 -11.3105 -11.4083 -11.5488 -11.7248 -11.9306 -12.1620 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components BaOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 154.3480 g 3 species in reaction 1.000 H2O 1.000 Ba++ -1.000 H+ 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 * used van't Hoff equation to compute logKs BaSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 233.4040 g 2 species in reaction 1.000 Ba++ 1.000 SO4-- -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 * used van't Hoff equation to compute logKs BF(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 80.8324 g 2 species in reaction 1.000 F- 1.000 H3BO3 .5241 .4593 .4000 .3350 .2760 .2222 .1728 .1275 * used van't Hoff equation to compute logKs BF2(OH)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 82.8228 g 4 species in reaction -1.000 H2O 2.000 F- 1.000 H3BO3 1.000 H+ -7.5215 -7.5781 -7.6300 -7.6868 -7.7384 -7.7855 -7.8287 -7.8684 * used van't Hoff equation to compute logKs BF3OH- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 84.8132 g 4 species in reaction -2.000 H2O 3.000 F- 1.000 H3BO3 2.000 H+ -13.7783 -13.7218 -13.6700 -13.6133 -13.5618 -13.5149 -13.4718 -13.4322 * used van't Hoff equation to compute logKs BF4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 86.8036 g 4 species in reaction -3.000 H2O 4.000 F- 1.000 H3BO3 3.000 H+ -20.4038 -20.3392 -20.2800 -20.2152 -20.1563 -20.1026 -20.0533 -20.0080 * used van't Hoff equation to compute logKs CaCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -3.1343 -3.1429 -3.2241 -3.3835 -3.5798 -3.7880 -3.9889 -4.1679 * used analytic equation to compute logKs CaF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 59.0784 g 2 species in reaction 1.000 F- 1.000 Ca++ -.6636 -.8078 -.9400 -1.0847 -1.2161 -1.3360 -1.4459 -1.5470 * used van't Hoff equation to compute logKs CaH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 137.0698 g 3 species in reaction 1.000 PO4--- 2.000 H+ 1.000 Ca++ -21.0361 -20.9969 -20.9610 -20.9217 -20.8859 -20.8533 -20.8235 -20.7960 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CaHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 101.0991 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Ca++ -11.4485 -11.4543 -11.4345 -11.4003 -11.3757 -11.3778 -11.4196 -11.5109 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CaHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.0618 g 3 species in reaction 1.000 PO4--- 1.000 H+ 1.000 Ca++ -15.1004 -15.0924 -15.0850 -15.0769 -15.0696 -15.0629 -15.0568 -15.0511 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CaHSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 137.1520 g 3 species in reaction 1.000 H+ 1.000 SO4-- 1.000 Ca++ -2.8581 -2.9557 -3.0678 -3.2180 -3.3823 -3.5580 -3.7429 -3.9353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CaOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 57.0880 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Ca++ 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 * used van't Hoff equation to compute logKs CaPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0538 g 2 species in reaction 1.000 PO4--- 1.000 Ca++ -6.2510 -6.3596 -6.4590 -6.5678 -6.6667 -6.7570 -6.8397 -6.9157 * used van't Hoff equation to compute logKs CaSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.1440 g 2 species in reaction 1.000 SO4-- 1.000 Ca++ -2.1893 -2.2471 -2.3000 -2.3579 -2.4106 -2.4586 -2.5026 -2.5431 * used van't Hoff equation to compute logKs Cd(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 232.4222 g 2 species in reaction 1.000 Cd++ 2.000 CO3-- -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 * used van't Hoff equation to compute logKs Cd(HS)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 178.5440 g 3 species in reaction 1.000 Cd++ 2.000 H2S -2.000 H+ -1.8265 -2.2806 -2.6466 -2.9844 -3.2259 -3.3837 -3.4683 -3.4886 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Cd(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 211.6160 g 3 species in reaction 1.000 Cd++ 3.000 H2S -3.000 H+ 3.3453 2.6641 2.1150 1.6083 1.2461 1.0094 .8825 .8521 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Cd(HS)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 244.6880 g 3 species in reaction 1.000 Cd++ 4.000 H2S -4.000 H+ 8.5070 7.5988 6.8667 6.1911 5.7082 5.3926 5.2234 5.1828 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Cd(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 146.4160 g 3 species in reaction 1.000 Cd++ 2.000 H2O -2.000 H+ 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 * used van't Hoff equation to compute logKs Cd(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 163.4240 g 3 species in reaction 1.000 Cd++ 3.000 H2O -3.000 H+ 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 * used van't Hoff equation to compute logKs Cd(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 180.4320 g 3 species in reaction 1.000 Cd++ 4.000 H2O -4.000 H+ 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 * used van't Hoff equation to compute logKs Cd(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 304.5280 g 2 species in reaction 1.000 Cd++ 2.000 SO4-- -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 * used van't Hoff equation to compute logKs Cd2OH+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 241.8080 g 3 species in reaction 2.000 Cd++ 1.000 H2O -1.000 H+ 10.1212 9.7396 9.3900 9.0073 8.6596 8.3423 8.0515 7.7842 * used van't Hoff equation to compute logKs CdBr+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 192.3040 g 2 species in reaction 1.000 Cd++ 1.000 Br- -2.2243 -2.1960 -2.1700 -2.1416 -2.1157 -2.0921 -2.0705 -2.0507 * used van't Hoff equation to compute logKs CdBr2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 272.2080 g 2 species in reaction 1.000 Cd++ 2.000 Br- -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 * used van't Hoff equation to compute logKs CdCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 147.8530 g 2 species in reaction 1.000 Cd++ 1.000 Cl- -1.9404 -1.9611 -1.9800 -2.0007 -2.0195 -2.0367 -2.0524 -2.0669 * used van't Hoff equation to compute logKs CdCl2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 183.3060 g 2 species in reaction 1.000 Cd++ 2.000 Cl- -2.5168 -2.5602 -2.6000 -2.6435 -2.6831 -2.7192 -2.7523 -2.7827 * used van't Hoff equation to compute logKs CdCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 218.7590 g 2 species in reaction 1.000 Cd++ 3.000 Cl- -2.1384 -2.2749 -2.4000 -2.5369 -2.6613 -2.7749 -2.8789 -2.9746 * used van't Hoff equation to compute logKs CdCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 172.4111 g 2 species in reaction 1.000 Cd++ 1.000 CO3-- -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 * used van't Hoff equation to compute logKs CdF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 131.3984 g 2 species in reaction 1.000 Cd++ 1.000 F- -1.1000 -1.1000 -1.1000 -1.1000 -1.1000 -1.1000 -1.1000 -1.1000 * used van't Hoff equation to compute logKs CdF2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 150.3968 g 2 species in reaction 1.000 Cd++ 2.000 F- -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 * used van't Hoff equation to compute logKs CdFulvate charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 762.4000 g 2 species in reaction 1.000 Cd++ 1.000 Fulvate-- -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 * used van't Hoff equation to compute logKs CdHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 173.4191 g 3 species in reaction 1.000 Cd++ 1.000 CO3-- 1.000 H+ -12.1286 -11.9573 -11.8289 -11.7217 -11.6571 -11.6281 -11.6289 -11.6552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CdHS+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 145.4720 g 3 species in reaction 1.000 Cd++ 1.000 H2S -1.000 H+ -2.8182 -3.0453 -3.2283 -3.3972 -3.5180 -3.5969 -3.6392 -3.6493 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CdHumate charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 2112.4000 g 2 species in reaction 1.000 Cd++ 1.000 Humate-- -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 * used van't Hoff equation to compute logKs CdI+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 239.3044 g 2 species in reaction 1.000 Cd++ 1.000 I- -2.3090 -2.2260 -2.1500 -2.0668 -1.9912 -1.9222 -1.8590 -1.8008 * used van't Hoff equation to compute logKs CdI2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 366.2088 g 2 species in reaction 1.000 Cd++ 2.000 I- -3.5900 -3.5900 -3.5900 -3.5900 -3.5900 -3.5900 -3.5900 -3.5900 * used van't Hoff equation to compute logKs CdNO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 174.4067 g 2 species in reaction 1.000 Cd++ 1.000 NO3- -.7488 -.5668 -.4000 -.2174 -.0515 .0998 .2385 .3661 * used van't Hoff equation to compute logKs CdOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 129.4080 g 3 species in reaction 1.000 Cd++ 1.000 H2O -1.000 H+ 10.9588 10.5002 10.0800 9.6201 9.2022 8.8208 8.4714 8.1501 * used van't Hoff equation to compute logKs CdOHCl(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 164.8610 g 4 species in reaction 1.000 Cd++ 1.000 H2O 1.000 Cl- -1.000 H+ 7.6962 7.5437 7.4040 7.2511 7.1122 6.9854 6.8692 6.7624 * used van't Hoff equation to compute logKs CdSO4(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 208.4640 g 2 species in reaction 1.000 Cd++ 1.000 SO4-- -2.3875 -2.4254 -2.4600 -2.4979 -2.5324 -2.5638 -2.5926 -2.6191 * used van't Hoff equation to compute logKs CO2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 44.0111 g 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ -17.2071 -16.8974 -16.6807 -16.5191 -16.4433 -16.4365 -16.4859 -16.5819 * used analytic equation to compute logKs Cu(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 183.5682 g 2 species in reaction 2.000 CO3-- 1.000 Cu++ -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 * used van't Hoff equation to compute logKs Cu(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 162.7620 g 3 species in reaction 1.000 Cu++ 3.000 H2S -3.000 H+ -3.8447 -4.5259 -5.0750 -5.5817 -5.9439 -6.1806 -6.3075 -6.3379 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Cu(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 97.5620 g 3 species in reaction 2.000 H2O 1.000 Cu++ -2.000 H+ 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 * used van't Hoff equation to compute logKs Cu(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 114.5700 g 3 species in reaction 3.000 H2O 1.000 Cu++ -3.000 H+ 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 * used van't Hoff equation to compute logKs Cu(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 131.5780 g 3 species in reaction 4.000 H2O 1.000 Cu++ -4.000 H+ 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 * used van't Hoff equation to compute logKs Cu2(OH)2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 161.1080 g 3 species in reaction 2.000 H2O 2.000 Cu++ -2.000 H+ 11.5356 10.9215 10.3589 9.7431 9.1836 8.6730 8.2052 7.7750 * used analytic equation to compute logKs CuCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 98.9990 g 2 species in reaction 1.000 Cl- 1.000 Cu++ .1503 -.1525 -.4300 -.7337 -1.0096 -1.2615 -1.4922 -1.7044 * used van't Hoff equation to compute logKs CuCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 134.4520 g 2 species in reaction 2.000 Cl- 1.000 Cu++ .5484 .1787 -.1600 -.5308 -.8676 -1.1750 -1.4567 -1.7157 * used van't Hoff equation to compute logKs CuCl2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 134.4520 g 2 species in reaction 2.000 Cl- 1.000 Cu+ -5.5282 -5.5135 -5.5000 -5.4853 -5.4719 -5.4596 -5.4484 -5.4381 * used van't Hoff equation to compute logKs CuCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 169.9050 g 2 species in reaction 3.000 Cl- 1.000 Cu++ 3.2084 2.7291 2.2900 1.8093 1.3726 .9741 .6089 .2731 * used van't Hoff equation to compute logKs CuCl3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 169.9050 g 2 species in reaction 3.000 Cl- 1.000 Cu+ -5.6826 -5.6917 -5.7000 -5.7091 -5.7174 -5.7250 -5.7319 -5.7383 * used van't Hoff equation to compute logKs CuCl4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 205.3580 g 2 species in reaction 4.000 Cl- 1.000 Cu++ 5.7828 5.1603 4.5900 3.9657 3.3986 2.8809 2.4067 1.9706 * used van't Hoff equation to compute logKs CuCO3(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 123.5571 g 2 species in reaction 1.000 CO3-- 1.000 Cu++ -6.7300 -6.7300 -6.7300 -6.7300 -6.7300 -6.7300 -6.7300 -6.7300 * used van't Hoff equation to compute logKs CuF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 82.5444 g 2 species in reaction 1.000 F- 1.000 Cu++ -1.1513 -1.2080 -1.2600 -1.3169 -1.3686 -1.4157 -1.4589 -1.4987 * used van't Hoff equation to compute logKs CuFulvate charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 713.5460 g 2 species in reaction 1.000 Fulvate-- 1.000 Cu++ -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 * used van't Hoff equation to compute logKs CuHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 124.5651 g 3 species in reaction 1.000 CO3-- 1.000 Cu++ 1.000 H+ -13.3286 -13.1573 -13.0289 -12.9217 -12.8571 -12.8281 -12.8289 -12.8552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CuHumate charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 2063.5460 g 2 species in reaction 1.000 Humate-- 1.000 Cu++ -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 -6.2000 * used van't Hoff equation to compute logKs CuOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 80.5540 g 3 species in reaction 1.000 H2O 1.000 Cu++ -1.000 H+ 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 * used van't Hoff equation to compute logKs CuSO4(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 159.6100 g 2 species in reaction 1.000 Cu++ 1.000 SO4-- -2.2282 -2.2709 -2.3100 -2.3528 -2.3918 -2.4273 -2.4598 -2.4897 * used van't Hoff equation to compute logKs Fe(HS)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 121.9910 g 3 species in reaction 1.000 Fe++ 2.000 H2S -2.000 H+ 5.7535 5.2994 4.9334 4.5956 4.3541 4.1963 4.1117 4.0914 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Fe(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 155.0630 g 3 species in reaction 1.000 Fe++ 3.000 H2S -3.000 H+ 11.0683 10.3871 9.8380 9.3313 8.9691 8.7324 8.6055 8.5751 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Fe(OH)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 89.8630 g 3 species in reaction 1.000 Fe++ 2.000 H2O -2.000 H+ 22.4863 21.4862 20.5700 19.5671 18.6558 17.8243 17.0624 16.3617 * used van't Hoff equation to compute logKs Fe(OH)2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 89.8630 g 3 species in reaction 2.000 H2O 1.000 Fe+++ -2.000 H+ 6.8172 6.2185 5.6700 5.0696 4.5241 4.0263 3.5702 3.1508 * used van't Hoff equation to compute logKs Fe(OH)3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 106.8710 g 3 species in reaction 3.000 H2O 1.000 Fe+++ -3.000 H+ 14.2237 13.3555 12.5600 11.6893 10.8981 10.1762 9.5147 8.9064 * used van't Hoff equation to compute logKs Fe(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 106.8710 g 3 species in reaction 1.000 Fe++ 3.000 H2O -3.000 H+ 33.0327 31.9719 31.0000 29.9362 28.9696 28.0875 27.2793 26.5361 * used van't Hoff equation to compute logKs Fe(OH)4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 123.8790 g 3 species in reaction 4.000 H2O 1.000 Fe+++ -4.000 H+ 23.7401 22.6232 21.6000 20.4800 19.4624 18.5337 17.6828 16.9004 * used van't Hoff equation to compute logKs Fe(SO4)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 247.9750 g 2 species in reaction 1.000 Fe+++ 2.000 SO4-- -5.0714 -5.2325 -5.3800 -5.5415 -5.6882 -5.8222 -5.9449 -6.0577 * used van't Hoff equation to compute logKs Fe2(OH)2++++ charge= 4 ion size= 0.0 A b= 0.0000 mole wt.= 145.7100 g 3 species in reaction 2.000 H2O 2.000 Fe+++ -2.000 H+ 3.8557 3.3830 2.9500 2.4760 2.0454 1.6524 1.2923 .9611 * used van't Hoff equation to compute logKs Fe3(OH)4+++++ charge= 5 ion size= 0.0 A b= 0.0000 mole wt.= 235.5730 g 3 species in reaction 4.000 H2O 3.000 Fe+++ -4.000 H+ 7.2593 6.7587 6.3000 5.7979 5.3417 4.9255 4.5440 4.1933 * used van't Hoff equation to compute logKs FeCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 91.3000 g 2 species in reaction 1.000 Fe++ 1.000 Cl- -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 * used van't Hoff equation to compute logKs FeCl++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 91.3000 g 2 species in reaction 1.000 Cl- 1.000 Fe+++ -1.1043 -1.3004 -1.4800 -1.6766 -1.8553 -2.0183 -2.1677 -2.3050 * used van't Hoff equation to compute logKs FeCl2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 126.7530 g 2 species in reaction 2.000 Cl- 1.000 Fe+++ -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 * used van't Hoff equation to compute logKs FeCl3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 162.2060 g 2 species in reaction 3.000 Cl- 1.000 Fe+++ -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 * used van't Hoff equation to compute logKs FeCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 115.8581 g 2 species in reaction 1.000 Fe++ 1.000 CO3-- -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 * used van't Hoff equation to compute logKs FeF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 74.8454 g 2 species in reaction 1.000 Fe++ 1.000 F- -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 * used van't Hoff equation to compute logKs FeF++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 74.8454 g 2 species in reaction 1.000 F- 1.000 Fe+++ -6.0189 -6.1134 -6.2000 -6.2948 -6.3809 -6.4595 -6.5315 -6.5978 * used van't Hoff equation to compute logKs FeF2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 93.8438 g 2 species in reaction 2.000 F- 1.000 Fe+++ -10.4780 -10.6460 -10.8000 -10.9685 -11.1217 -11.2614 -11.3894 -11.5072 * used van't Hoff equation to compute logKs FeF3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 112.8422 g 2 species in reaction 3.000 F- 1.000 Fe+++ -13.6377 -13.8268 -14.0000 -14.1896 -14.3619 -14.5191 -14.6631 -14.7955 * used van't Hoff equation to compute logKs FeFulvate+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 705.8470 g 2 species in reaction 1.000 Fulvate-- 1.000 Fe+++ -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 * used van't Hoff equation to compute logKs FeH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 152.8368 g 3 species in reaction 1.000 Fe++ 1.000 PO4--- 2.000 H+ -22.5562 -22.3980 -22.2530 -22.0943 -21.9501 -21.8185 -21.6980 -21.5871 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeH2PO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 152.8368 g 3 species in reaction 1.000 PO4--- 1.000 Fe+++ 2.000 H+ -25.2862 -25.1280 -24.9830 -24.8243 -24.6801 -24.5485 -24.4280 -24.3171 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 116.8661 g 3 species in reaction 1.000 Fe++ 1.000 CO3-- 1.000 H+ -12.6286 -12.4573 -12.3289 -12.2217 -12.1571 -12.1281 -12.1289 -12.1552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.8288 g 3 species in reaction 1.000 Fe++ 1.000 PO4--- 1.000 H+ -16.1828 -16.0592 -15.9460 -15.8221 -15.7095 -15.6067 -15.5125 -15.4259 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHPO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 151.8288 g 3 species in reaction 1.000 PO4--- 1.000 Fe+++ 1.000 H+ -17.6264 -17.7045 -17.7760 -17.8543 -17.9254 -17.9904 -18.0498 -18.1045 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 152.9190 g 3 species in reaction 1.000 Fe++ 1.000 H+ 1.000 SO4-- -2.8581 -2.9557 -3.0678 -3.2180 -3.3823 -3.5580 -3.7429 -3.9353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHSO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 152.9190 g 3 species in reaction 1.000 Fe+++ 1.000 H+ 1.000 SO4-- -4.2581 -4.3557 -4.4678 -4.6180 -4.7823 -4.9580 -5.1429 -5.3353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHumate+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 2055.8470 g 2 species in reaction 1.000 Humate-- 1.000 Fe+++ -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 -9.4000 * used van't Hoff equation to compute logKs FeOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 72.8550 g 3 species in reaction 1.000 Fe++ 1.000 H2O -1.000 H+ 10.3855 9.9234 9.5000 9.0365 8.6155 8.2312 7.8791 7.5553 * used van't Hoff equation to compute logKs FeOH++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 72.8550 g 3 species in reaction 1.000 H2O 1.000 Fe+++ -1.000 H+ 2.8877 2.5236 2.1900 1.8249 1.4931 1.1903 .9129 .6578 * used van't Hoff equation to compute logKs FeSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.9110 g 2 species in reaction 1.000 Fe++ 1.000 SO4-- -2.0333 -2.1464 -2.2500 -2.3634 -2.4664 -2.5605 -2.6466 -2.7259 * used van't Hoff equation to compute logKs FeSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 151.9110 g 2 species in reaction 1.000 Fe+++ 1.000 SO4-- -3.7777 -3.9146 -4.0400 -4.1773 -4.3020 -4.4158 -4.5201 -4.6160 * used van't Hoff equation to compute logKs H2AsO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 124.9376 g 4 species in reaction -1.000 H2O 1.000 H3AsO4 1.000 H2 -1.000 H+ -14.7921 -14.0395 -13.3500 -12.5953 -11.9095 -11.2837 -10.7104 -10.1831 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components H2AsO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 140.9376 g 2 species in reaction 1.000 H3AsO4 -1.000 H+ 2.1867 2.2458 2.3000 2.3593 2.4132 2.4623 2.5074 2.5488 * used van't Hoff equation to compute logKs H2BO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 60.8260 g 2 species in reaction 1.000 H3BO3 -1.000 H+ 9.4563 9.3434 9.2400 9.1268 9.0240 8.9301 8.8441 8.7650 * used van't Hoff equation to compute logKs H2F2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 40.0128 g 2 species in reaction 2.000 F- 2.000 H+ -6.7680 -6.7680 -6.7680 -6.7680 -6.7680 -6.7680 -6.7680 -6.7680 * used van't Hoff equation to compute logKs H2PO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 96.9898 g 2 species in reaction 1.000 PO4--- 2.000 H+ -19.8562 -19.6980 -19.5530 -19.3943 -19.2501 -19.1185 -18.9980 -18.8871 * used van't Hoff equation to compute logKs H2Se charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 80.9760 g 2 species in reaction 1.000 HSe- 1.000 H+ -4.1556 -3.9700 -3.8000 -3.6139 -3.4448 -3.2906 -3.1492 -3.0192 * used van't Hoff equation to compute logKs H2SeO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 128.9760 g 2 species in reaction 1.000 SeO3-- 2.000 H+ -11.2500 -11.2500 -11.2500 -11.2500 -11.2500 -11.2500 -11.2500 -11.2500 * used van't Hoff equation to compute logKs H2SiO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 94.1003 g 2 species in reaction 1.000 H4SiO4 -2.000 H+ 24.2687 23.5849 22.9987 22.4045 21.9115 21.5046 21.1719 20.9039 * used analytic equation to compute logKs H3AsO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 125.9456 g 3 species in reaction -1.000 H2O 1.000 H3AsO4 1.000 H2 -24.3837 -23.4006 -22.5000 -21.5142 -20.6184 -19.8010 -19.0521 -18.3634 * used van't Hoff equation to compute logKs H3SiO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 95.1083 g 2 species in reaction 1.000 H4SiO4 -1.000 H+ 10.2795 10.0366 9.8314 9.6253 9.4548 9.3134 9.1964 9.1003 * used analytic equation to compute logKs H4AsO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 126.9536 g 4 species in reaction -1.000 H2O 1.000 H3AsO4 1.000 H2 1.000 H+ -24.0787 -23.0956 -22.1950 -21.2092 -20.3134 -19.4960 -18.7471 -18.0584 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components HAsO3-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 123.9296 g 4 species in reaction -1.000 H2O 1.000 H3AsO4 1.000 H2 -2.000 H+ .4189 .9048 1.3500 1.8373 2.2800 2.6841 3.0543 3.3947 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components HAsO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 139.9296 g 2 species in reaction 1.000 H3AsO4 -2.000 H+ 9.3983 9.4305 9.4600 9.4923 9.5216 9.5484 9.5729 9.5954 * used van't Hoff equation to compute logKs HCO3- charge= -1 ion size= 5.4 A b= 0.0000 mole wt.= 61.0191 g 2 species in reaction 1.000 CO3-- 1.000 H+ -10.6286 -10.4573 -10.3289 -10.2217 -10.1571 -10.1281 -10.1289 -10.1552 * used analytic equation to compute logKs HF charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 20.0064 g 2 species in reaction 1.000 F- 1.000 H+ -2.9916 -3.0809 -3.1760 -3.2968 -3.4238 -3.5563 -3.6937 -3.8352 * used analytic equation to compute logKs HF2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 39.0048 g 2 species in reaction 2.000 F- 1.000 H+ -3.4548 -3.6141 -3.7600 -3.9198 -4.0649 -4.1974 -4.3187 -4.4303 * used van't Hoff equation to compute logKs HFulvate- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 651.0080 g 2 species in reaction 1.000 Fulvate-- 1.000 H+ -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 * used van't Hoff equation to compute logKs HHumate- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 2001.0080 g 2 species in reaction 1.000 Humate-- 1.000 H+ -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 -4.2700 * used van't Hoff equation to compute logKs HPO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 95.9818 g 2 species in reaction 1.000 PO4--- 1.000 H+ -12.5828 -12.4592 -12.3460 -12.2221 -12.1095 -12.0067 -11.9125 -11.8259 * used van't Hoff equation to compute logKs HS- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 33.0720 g 2 species in reaction 1.000 H2S -1.000 H+ 7.3518 7.1247 6.9417 6.7728 6.6520 6.5731 6.5308 6.5207 * used analytic equation to compute logKs HSeO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 127.9680 g 2 species in reaction 1.000 SeO3-- 1.000 H+ -8.5000 -8.5000 -8.5000 -8.5000 -8.5000 -8.5000 -8.5000 -8.5000 * used van't Hoff equation to compute logKs HSeO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 143.9680 g 2 species in reaction 1.000 H+ 1.000 SeO4-- -1.3306 -1.5025 -1.6600 -1.8324 -1.9890 -2.1320 -2.2629 -2.3834 * used van't Hoff equation to compute logKs HSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 97.0720 g 2 species in reaction 1.000 H+ 1.000 SO4-- -1.7781 -1.8757 -1.9878 -2.1380 -2.3023 -2.4780 -2.6629 -2.8553 * used analytic equation to compute logKs KHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0838 g 3 species in reaction 1.000 PO4--- 1.000 K+ 1.000 H+ -12.8728 -12.7492 -12.6360 -12.5121 -12.3995 -12.2967 -12.2025 -12.1159 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components KSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.1660 g 2 species in reaction 1.000 K+ 1.000 SO4-- -.6400 -.7479 -.8467 -.9550 -1.0533 -1.1430 -1.2252 -1.3008 * used analytic equation to compute logKs LiSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 103.0030 g 2 species in reaction 1.000 Li+ 1.000 SO4-- -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 * used van't Hoff equation to compute logKs MgCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.3231 g 2 species in reaction 1.000 Mg++ 1.000 CO3-- -2.8129 -2.8963 -2.9797 -3.0797 -3.1798 -3.2798 -3.3799 -3.4799 * used analytic equation to compute logKs MgF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 43.3104 g 2 species in reaction 1.000 Mg++ 1.000 F- -1.6053 -1.7174 -1.8200 -1.9324 -2.0344 -2.1276 -2.2129 -2.2914 * used van't Hoff equation to compute logKs MgH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 121.3018 g 3 species in reaction 1.000 Mg++ 1.000 PO4--- 2.000 H+ -21.1411 -21.1019 -21.0660 -21.0267 -20.9909 -20.9583 -20.9285 -20.9010 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MgHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 85.3311 g 3 species in reaction 1.000 Mg++ 1.000 CO3-- 1.000 H+ -11.6799 -11.5088 -11.3971 -11.3283 -11.3185 -11.3575 -11.4374 -11.5518 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components MgHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.2938 g 3 species in reaction 1.000 Mg++ 1.000 PO4--- 1.000 H+ -15.2314 -15.2234 -15.2160 -15.2079 -15.2006 -15.1939 -15.1878 -15.1821 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MgOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 41.3200 g 3 species in reaction 1.000 H2O 1.000 Mg++ -1.000 H+ 12.5102 11.9517 11.4400 10.8799 10.3710 9.9067 9.4812 9.0899 * used van't Hoff equation to compute logKs MgPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 119.2858 g 2 species in reaction 1.000 Mg++ 1.000 PO4--- -6.3810 -6.4896 -6.5890 -6.6978 -6.7967 -6.8870 -6.9697 -7.0457 * used van't Hoff equation to compute logKs MgSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.3760 g 2 species in reaction 1.000 Mg++ 1.000 SO4-- -2.0648 -2.2241 -2.3700 -2.5298 -2.6749 -2.8074 -2.9287 -3.0403 * used van't Hoff equation to compute logKs Mn(NO3)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 178.9514 g 2 species in reaction 2.000 NO3- 1.000 Mn++ -.6266 -.6127 -.6000 -.5861 -.5735 -.5619 -.5514 -.5417 * used van't Hoff equation to compute logKs Mn(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 105.9620 g 3 species in reaction 3.000 H2O -3.000 H+ 1.000 Mn++ 34.8000 34.8000 34.8000 34.8000 34.8000 34.8000 34.8000 34.8000 * used van't Hoff equation to compute logKs MnCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 90.3910 g 2 species in reaction 1.000 Cl- 1.000 Mn++ -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 * used van't Hoff equation to compute logKs MnCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 125.8440 g 2 species in reaction 2.000 Cl- 1.000 Mn++ -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 * used van't Hoff equation to compute logKs MnCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 161.2970 g 2 species in reaction 3.000 Cl- 1.000 Mn++ .3100 .3100 .3100 .3100 .3100 .3100 .3100 .3100 * used van't Hoff equation to compute logKs MnCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 114.9491 g 2 species in reaction 1.000 CO3-- 1.000 Mn++ -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 * used van't Hoff equation to compute logKs MnF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 73.9364 g 2 species in reaction 1.000 F- 1.000 Mn++ -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 * used van't Hoff equation to compute logKs MnHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 115.9571 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Mn++ -12.5786 -12.4073 -12.2789 -12.1717 -12.1071 -12.0781 -12.0789 -12.1052 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components MnOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 71.9460 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Mn++ 11.5560 11.0519 10.5900 10.0844 9.6250 9.2058 8.8218 8.4685 * used van't Hoff equation to compute logKs MnSO4(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.0020 g 2 species in reaction 1.000 SO4-- 1.000 Mn++ -2.0239 -2.1419 -2.2500 -2.3683 -2.4758 -2.5739 -2.6638 -2.7465 * used van't Hoff equation to compute logKs NaCO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 83.0009 g 2 species in reaction 1.000 CO3-- 1.000 Na+ -.6723 -.9842 -1.2700 -1.5828 -1.8671 -2.1264 -2.3641 -2.5827 * used van't Hoff equation to compute logKs NaF charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 41.9882 g 2 species in reaction 1.000 F- 1.000 Na+ .2400 .2400 .2400 .2400 .2400 .2400 .2400 .2400 * used van't Hoff equation to compute logKs NaHCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.0089 g 3 species in reaction 1.000 CO3-- 1.000 Na+ 1.000 H+ -10.3786 -10.2073 -10.0789 -9.9717 -9.9071 -9.8781 -9.8789 -9.9052 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components NaHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 118.9716 g 3 species in reaction 1.000 PO4--- 1.000 Na+ 1.000 H+ -12.8728 -12.7492 -12.6360 -12.5121 -12.3995 -12.2967 -12.2025 -12.1159 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NaSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 119.0538 g 2 species in reaction 1.000 Na+ 1.000 SO4-- -.6249 -.6641 -.7000 -.7393 -.7751 -.8077 -.8375 -.8650 * used van't Hoff equation to compute logKs NH3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 17.0307 g 2 species in reaction 1.000 NH4+ -1.000 H+ 10.0841 9.6451 9.2442 8.8070 8.4114 8.0521 7.7243 7.4244 * used analytic equation to compute logKs NH4SO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 114.1027 g 2 species in reaction 1.000 NH4+ 1.000 SO4-- -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 * used van't Hoff equation to compute logKs Ni(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 178.7322 g 2 species in reaction 2.000 CO3-- 1.000 Ni++ -10.1100 -10.1100 -10.1100 -10.1100 -10.1100 -10.1100 -10.1100 -10.1100 * used van't Hoff equation to compute logKs Ni(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 92.7260 g 3 species in reaction 2.000 H2O 1.000 Ni++ -2.000 H+ 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 19.0000 * used van't Hoff equation to compute logKs Ni(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 109.7340 g 3 species in reaction 3.000 H2O 1.000 Ni++ -3.000 H+ 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 30.0000 * used van't Hoff equation to compute logKs Ni(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 250.8380 g 2 species in reaction 1.000 Ni++ 2.000 SO4-- -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 -1.0200 * used van't Hoff equation to compute logKs NiBr+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 138.6140 g 2 species in reaction 1.000 Ni++ 1.000 Br- -.5000 -.5000 -.5000 -.5000 -.5000 -.5000 -.5000 -.5000 * used van't Hoff equation to compute logKs NiCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 94.1630 g 2 species in reaction 1.000 Cl- 1.000 Ni++ -.4000 -.4000 -.4000 -.4000 -.4000 -.4000 -.4000 -.4000 * used van't Hoff equation to compute logKs NiCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 129.6160 g 2 species in reaction 2.000 Cl- 1.000 Ni++ -.9600 -.9600 -.9600 -.9600 -.9600 -.9600 -.9600 -.9600 * used van't Hoff equation to compute logKs NiCO3(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 118.7211 g 2 species in reaction 1.000 CO3-- 1.000 Ni++ -6.8700 -6.8700 -6.8700 -6.8700 -6.8700 -6.8700 -6.8700 -6.8700 * used van't Hoff equation to compute logKs NiF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 77.7084 g 2 species in reaction 1.000 F- 1.000 Ni++ -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 * used van't Hoff equation to compute logKs NiHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 119.7291 g 3 species in reaction 1.000 CO3-- 1.000 Ni++ 1.000 H+ -12.7686 -12.5973 -12.4689 -12.3617 -12.2971 -12.2681 -12.2689 -12.2952 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components NiOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 75.7180 g 3 species in reaction 1.000 H2O 1.000 Ni++ -1.000 H+ 10.6932 10.2584 9.8600 9.4239 9.0277 8.6662 8.3349 8.0302 * used van't Hoff equation to compute logKs NiSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 154.7740 g 2 species in reaction 1.000 Ni++ 1.000 SO4-- -2.1880 -2.2412 -2.2900 -2.3434 -2.3919 -2.4361 -2.4766 -2.5139 * used van't Hoff equation to compute logKs OH- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 17.0080 g 2 species in reaction 1.000 H2O -1.000 H+ 14.9421 14.4387 13.9995 13.5431 13.1507 12.8121 12.5190 12.2654 * used analytic equation to compute logKs Pb(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 327.2122 g 2 species in reaction 2.000 CO3-- 1.000 Pb++ -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 * used van't Hoff equation to compute logKs Pb(HS)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 273.3340 g 3 species in reaction 2.000 H2S -2.000 H+ 1.000 Pb++ -.5665 -1.0206 -1.3866 -1.7244 -1.9659 -2.1237 -2.2083 -2.2286 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Pb(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 306.4060 g 3 species in reaction 3.000 H2S -3.000 H+ 1.000 Pb++ 5.4853 4.8041 4.2550 3.7483 3.3861 3.1494 3.0225 2.9921 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Pb(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 241.2060 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 Pb++ 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 * used van't Hoff equation to compute logKs Pb(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 258.2140 g 3 species in reaction 3.000 H2O -3.000 H+ 1.000 Pb++ 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 * used van't Hoff equation to compute logKs Pb(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 275.2220 g 3 species in reaction 4.000 H2O -4.000 H+ 1.000 Pb++ 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 * used van't Hoff equation to compute logKs Pb(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 399.3180 g 2 species in reaction 2.000 SO4-- 1.000 Pb++ -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 * used van't Hoff equation to compute logKs Pb2OH+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 431.3880 g 3 species in reaction 1.000 H2O -1.000 H+ 2.000 Pb++ 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 * used van't Hoff equation to compute logKs Pb3(OH)4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 689.6020 g 3 species in reaction 4.000 H2O -4.000 H+ 3.000 Pb++ 25.6578 24.7300 23.8800 22.9496 22.1042 21.3328 20.6259 19.9759 * used van't Hoff equation to compute logKs PbBr+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 287.0940 g 2 species in reaction 1.000 Br- 1.000 Pb++ -1.5768 -1.6776 -1.7700 -1.8711 -1.9630 -2.0468 -2.1236 -2.1943 * used van't Hoff equation to compute logKs PbBr2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 366.9980 g 2 species in reaction 2.000 Br- 1.000 Pb++ -1.4400 -1.4400 -1.4400 -1.4400 -1.4400 -1.4400 -1.4400 -1.4400 * used van't Hoff equation to compute logKs PbCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 242.6430 g 2 species in reaction 1.000 Cl- 1.000 Pb++ -1.3062 -1.4595 -1.6000 -1.7538 -1.8935 -2.0210 -2.1378 -2.2453 * used van't Hoff equation to compute logKs PbCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 278.0960 g 2 species in reaction 2.000 Cl- 1.000 Pb++ -1.7275 -1.7654 -1.8000 -1.8379 -1.8724 -1.9038 -1.9326 -1.9591 * used van't Hoff equation to compute logKs PbCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 313.5490 g 2 species in reaction 3.000 Cl- 1.000 Pb++ -1.5544 -1.6304 -1.7000 -1.7762 -1.8454 -1.9086 -1.9665 -2.0197 * used van't Hoff equation to compute logKs PbCl4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 349.0020 g 2 species in reaction 4.000 Cl- 1.000 Pb++ -1.1432 -1.2668 -1.3800 -1.5039 -1.6165 -1.7193 -1.8135 -1.9001 * used van't Hoff equation to compute logKs PbCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 267.2011 g 2 species in reaction 1.000 CO3-- 1.000 Pb++ -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 * used van't Hoff equation to compute logKs PbF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 226.1884 g 2 species in reaction 1.000 F- 1.000 Pb++ -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 -1.2500 * used van't Hoff equation to compute logKs PbF2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 245.1868 g 2 species in reaction 2.000 F- 1.000 Pb++ -2.5600 -2.5600 -2.5600 -2.5600 -2.5600 -2.5600 -2.5600 -2.5600 * used van't Hoff equation to compute logKs PbF3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 264.1852 g 2 species in reaction 3.000 F- 1.000 Pb++ -3.4200 -3.4200 -3.4200 -3.4200 -3.4200 -3.4200 -3.4200 -3.4200 * used van't Hoff equation to compute logKs PbF4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 283.1836 g 2 species in reaction 4.000 F- 1.000 Pb++ -3.1000 -3.1000 -3.1000 -3.1000 -3.1000 -3.1000 -3.1000 -3.1000 * used van't Hoff equation to compute logKs PbHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 268.2091 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Pb++ -13.5286 -13.3573 -13.2289 -13.1217 -13.0571 -13.0281 -13.0289 -13.0552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components PbI+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 334.0944 g 2 species in reaction 1.000 I- 1.000 Pb++ -1.9400 -1.9400 -1.9400 -1.9400 -1.9400 -1.9400 -1.9400 -1.9400 * used van't Hoff equation to compute logKs PbI2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 460.9988 g 2 species in reaction 2.000 I- 1.000 Pb++ -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 * used van't Hoff equation to compute logKs PbNO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 269.1967 g 2 species in reaction 1.000 NO3- 1.000 Pb++ -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 * used van't Hoff equation to compute logKs PbOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 224.1980 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Pb++ 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 * used van't Hoff equation to compute logKs PbSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 303.2540 g 2 species in reaction 1.000 SO4-- 1.000 Pb++ -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 * used van't Hoff equation to compute logKs S-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 21.0815 20.4308 19.8597 19.2659 18.7592 18.3281 17.9630 17.6561 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components S2-- charge= -2 ion size= 6.5 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 22.6445 22.0184 21.4697 20.9005 20.4161 20.0054 19.6590 19.3692 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components S3-- charge= -2 ion size= 8.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 21.3314 20.7403 20.2237 19.6896 19.2371 18.8555 18.5358 18.2705 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components S4-- charge= -2 ion size= 10.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 17.8315 17.2648 16.7707 16.2612 15.8310 15.4698 15.1687 14.9207 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components S5-- charge= -2 ion size= 12.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 17.5707 17.0180 16.5367 16.0413 15.6238 15.2742 14.9838 14.7456 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components S6-- charge= -2 ion size= 14.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 H2S -2.000 H+ 17.2328 17.0057 16.8227 16.6538 16.5330 16.4541 16.4118 16.4017 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components SiF6-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 142.0747 g 4 species in reaction -4.000 H2O 1.000 H4SiO4 6.000 F- 4.000 H+ -31.2708 -30.7015 -30.1800 -29.6091 -29.0904 -28.6171 -28.1834 -27.7845 * used van't Hoff equation to compute logKs SrCO3 charge= 0 ion size= 5.0 A b= 0.0000 mole wt.= 147.6311 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ -2.4844 -2.6447 -2.8051 -2.9975 -3.1899 -3.3822 -3.5746 -3.7670 * used analytic equation to compute logKs SrHCO3+ charge= 1 ion size= 5.4 A b= 0.0000 mole wt.= 148.6391 g 3 species in reaction 1.000 CO3-- 1.000 Sr++ 1.000 H+ -11.4415 -11.4561 -11.5135 -11.6293 -11.7877 -11.9817 -12.2055 -12.4549 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components SrOH+ charge= 1 ion size= 5.0 A b= 0.0000 mole wt.= 104.6280 g 3 species in reaction 1.000 H2O 1.000 Sr++ -1.000 H+ 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 * used van't Hoff equation to compute logKs SrSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 183.6840 g 2 species in reaction 1.000 Sr++ 1.000 SO4-- -2.1505 -2.2233 -2.2900 -2.3630 -2.4294 -2.4899 -2.5454 -2.5964 * used van't Hoff equation to compute logKs U(CO3)4---- charge= -4 ion size= 0.0 A b= 0.0000 mole wt.= 478.0734 g 2 species in reaction 4.000 CO3-- 1.000 U++++ -32.9000 -32.9000 -32.9000 -32.9000 -32.9000 -32.9000 -32.9000 -32.9000 * used van't Hoff equation to compute logKs U(CO3)5------ charge= -6 ion size= 0.0 A b= 0.0000 mole wt.= 538.0845 g 2 species in reaction 5.000 CO3-- 1.000 U++++ -32.6583 -33.3585 -34.0000 -34.7022 -35.3402 -35.9224 -36.4559 -36.9465 * used van't Hoff equation to compute logKs U(NO3)2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 362.0424 g 2 species in reaction 2.000 NO3- 1.000 U++++ -2.3000 -2.3000 -2.3000 -2.3000 -2.3000 -2.3000 -2.3000 -2.3000 * used van't Hoff equation to compute logKs U(OH)2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 272.0450 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 U++++ 3.4594 2.8387 2.2700 1.6475 1.0819 .5658 .0928 -.3420 * used van't Hoff equation to compute logKs U(OH)3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 289.0530 g 3 species in reaction 3.000 H2O -3.000 H+ 1.000 U++++ 6.4542 5.6613 4.9350 4.1399 3.4175 2.7583 2.1543 1.5989 * used van't Hoff equation to compute logKs U(OH)4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 306.0610 g 3 species in reaction 4.000 H2O -4.000 H+ 1.000 U++++ 10.1591 9.2922 8.4980 7.6287 6.8388 6.1180 5.4576 4.8503 * used van't Hoff equation to compute logKs U(SO4)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 430.1570 g 2 species in reaction 2.000 SO4-- 1.000 U++++ -9.9767 -10.2498 -10.5000 -10.7739 -11.0227 -11.2498 -11.4578 -11.6491 * used van't Hoff equation to compute logKs U6(OH)15+++++++++ charge= 9 ion size= 0.0 A b= 0.0000 mole wt.= 1683.2940 g 3 species in reaction 15.000 H2O -15.000 H+ 6.000 U++++ 17.2000 17.2000 17.2000 17.2000 17.2000 17.2000 17.2000 17.2000 * used van't Hoff equation to compute logKs UBr+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 317.9330 g 2 species in reaction 1.000 Br- 1.000 U++++ -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 -1.5000 * used van't Hoff equation to compute logKs UCl+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 273.4820 g 2 species in reaction 1.000 Cl- 1.000 U++++ -2.0246 -1.8656 -1.7200 -1.5606 -1.4158 -1.2836 -1.1625 -1.0512 * used van't Hoff equation to compute logKs UF+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 257.0274 g 2 species in reaction 1.000 F- 1.000 U++++ -9.3872 -9.3417 -9.3000 -9.2544 -9.2129 -9.1750 -9.1404 -9.1085 * used van't Hoff equation to compute logKs UF2++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 276.0258 g 2 species in reaction 2.000 F- 1.000 U++++ -16.2737 -16.2457 -16.2200 -16.1919 -16.1664 -16.1431 -16.1218 -16.1021 * used van't Hoff equation to compute logKs UF3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 295.0242 g 2 species in reaction 3.000 F- 1.000 U++++ -21.5933 -21.5968 -21.6000 -21.6035 -21.6067 -21.6096 -21.6123 -21.6147 * used van't Hoff equation to compute logKs UF4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 314.0226 g 2 species in reaction 4.000 F- 1.000 U++++ -25.5584 -25.5279 -25.5000 -25.4695 -25.4417 -25.4164 -25.3932 -25.3718 * used van't Hoff equation to compute logKs UF5- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 333.0210 g 2 species in reaction 5.000 F- 1.000 U++++ -26.6846 -26.8544 -27.0100 -27.1803 -27.3350 -27.4762 -27.6056 -27.7245 * used van't Hoff equation to compute logKs UF6-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 352.0194 g 2 species in reaction 6.000 F- 1.000 U++++ -28.8786 -28.9942 -29.1000 -29.2159 -29.3211 -29.4172 -29.5052 -29.5862 * used van't Hoff equation to compute logKs UI+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 364.9334 g 2 species in reaction 1.000 I- 1.000 U++++ -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 -1.3000 * used van't Hoff equation to compute logKs UNO3+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 300.0357 g 2 species in reaction 1.000 NO3- 1.000 U++++ -1.4700 -1.4700 -1.4700 -1.4700 -1.4700 -1.4700 -1.4700 -1.4700 * used van't Hoff equation to compute logKs UO2(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 390.0512 g 2 species in reaction 2.000 CO3-- 1.000 UO2++ -16.7035 -16.8582 -17.0000 -17.1552 -17.2962 -17.4249 -17.5428 -17.6512 * used van't Hoff equation to compute logKs UO2(CO3)3---- charge= -4 ion size= 0.0 A b= 0.0000 mole wt.= 450.0623 g 2 species in reaction 3.000 CO3-- 1.000 UO2++ -22.2425 -21.9228 -21.6300 -21.3094 -21.0182 -20.7524 -20.5089 -20.2849 * used van't Hoff equation to compute logKs UO2(CO3)3----- charge= -5 ion size= 0.0 A b= 0.0000 mole wt.= 450.0623 g 2 species in reaction 1.000 UO2+ 3.000 CO3-- -7.2066 -7.3232 -7.4300 -7.5469 -7.6531 -7.7501 -7.8389 -7.9206 * used van't Hoff equation to compute logKs UO2(H2PO4)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 464.0086 g 3 species in reaction 2.000 PO4--- 1.000 UO2++ 4.000 H+ -45.4869 -44.9092 -44.3800 -43.8007 -43.2743 -42.7940 -42.3539 -41.9492 * used van't Hoff equation to compute logKs UO2(H2PO4)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 560.9984 g 3 species in reaction 3.000 PO4--- 1.000 UO2++ 6.000 H+ -68.1637 -67.1624 -66.2450 -65.2408 -64.3285 -63.4959 -62.7331 -62.0315 * used van't Hoff equation to compute logKs UO2(HPO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 461.9926 g 3 species in reaction 2.000 PO4--- 1.000 UO2++ 2.000 H+ -44.2326 -43.8195 -43.4410 -43.0267 -42.6503 -42.3068 -41.9920 -41.7026 * used van't Hoff equation to compute logKs UO2(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 321.0530 g 3 species in reaction 3.000 H2O 1.000 UO2++ -3.000 H+ 19.2000 19.2000 19.2000 19.2000 19.2000 19.2000 19.2000 19.2000 * used van't Hoff equation to compute logKs UO2(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 338.0610 g 3 species in reaction 4.000 H2O 1.000 UO2++ -4.000 H+ 33.0000 33.0000 33.0000 33.0000 33.0000 33.0000 33.0000 33.0000 * used van't Hoff equation to compute logKs UO2(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 462.1570 g 2 species in reaction 1.000 UO2++ 2.000 SO4-- -3.5765 -3.8706 -4.1400 -4.4349 -4.7029 -4.9474 -5.1715 -5.3775 * used van't Hoff equation to compute logKs UO2Br+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 349.9330 g 2 species in reaction 1.000 UO2++ 1.000 Br- -.2200 -.2200 -.2200 -.2200 -.2200 -.2200 -.2200 -.2200 * used van't Hoff equation to compute logKs UO2Cl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 305.4820 g 2 species in reaction 1.000 Cl- 1.000 UO2++ -.0425 -.1091 -.1700 -.2367 -.2973 -.3526 -.4033 -.4499 * used van't Hoff equation to compute logKs UO2Cl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 340.9350 g 2 species in reaction 2.000 Cl- 1.000 UO2++ 1.3415 1.2155 1.1000 .9736 .8588 .7540 .6579 .5696 * used van't Hoff equation to compute logKs UO2CO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 330.0401 g 2 species in reaction 1.000 CO3-- 1.000 UO2++ -9.5495 -9.5915 -9.6300 -9.6721 -9.7104 -9.7453 -9.7774 -9.8068 * used van't Hoff equation to compute logKs UO2F+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 289.0274 g 2 species in reaction 1.000 F- 1.000 UO2++ -5.0625 -5.0768 -5.0900 -5.1044 -5.1175 -5.1294 -5.1403 -5.1504 * used van't Hoff equation to compute logKs UO2F2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 308.0258 g 2 species in reaction 2.000 F- 1.000 UO2++ -8.5865 -8.6040 -8.6200 -8.6376 -8.6535 -8.6681 -8.6814 -8.6937 * used van't Hoff equation to compute logKs UO2F3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 327.0242 g 2 species in reaction 3.000 F- 1.000 UO2++ -10.8624 -10.8820 -10.9000 -10.9197 -10.9375 -10.9538 -10.9688 -10.9825 * used van't Hoff equation to compute logKs UO2F4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 346.0226 g 2 species in reaction 4.000 F- 1.000 UO2++ -11.6953 -11.6978 -11.7000 -11.7025 -11.7047 -11.7067 -11.7086 -11.7103 * used van't Hoff equation to compute logKs UO2H2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 367.0188 g 3 species in reaction 1.000 PO4--- 1.000 UO2++ 2.000 H+ -23.1182 -22.9887 -22.8700 -22.7401 -22.6221 -22.5143 -22.4157 -22.3249 * used van't Hoff equation to compute logKs UO2H3PO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 368.0268 g 3 species in reaction 1.000 PO4--- 1.000 UO2++ 3.000 H+ -22.8130 -22.8130 -22.8130 -22.8130 -22.8130 -22.8130 -22.8130 -22.8130 * used van't Hoff equation to compute logKs UO2HPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 366.0108 g 3 species in reaction 1.000 PO4--- 1.000 UO2++ 1.000 H+ -20.3509 -20.2774 -20.2100 -20.1363 -20.0693 -20.0081 -19.9521 -19.9006 * used van't Hoff equation to compute logKs UO2NO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 332.0357 g 2 species in reaction 1.000 UO2++ 1.000 NO3- -.3000 -.3000 -.3000 -.3000 -.3000 -.3000 -.3000 -.3000 * used van't Hoff equation to compute logKs UO2OH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 287.0370 g 3 species in reaction 1.000 H2O 1.000 UO2++ -1.000 H+ 5.9390 5.5533 5.2000 4.8133 4.4619 4.1412 3.8474 3.5772 * used van't Hoff equation to compute logKs UO2PO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 365.0028 g 2 species in reaction 1.000 PO4--- 1.000 UO2++ -13.6900 -13.6900 -13.6900 -13.6900 -13.6900 -13.6900 -13.6900 -13.6900 * used van't Hoff equation to compute logKs UO2SO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 366.0930 g 2 species in reaction 1.000 UO2++ 1.000 SO4-- -2.8347 -2.9992 -3.1500 -3.3150 -3.4649 -3.6018 -3.7271 -3.8424 * used van't Hoff equation to compute logKs UOH+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 255.0370 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 U++++ 1.2920 .8996 .5400 .1464 -.2112 -.5375 -.8365 -1.1115 * used van't Hoff equation to compute logKs USO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 334.0930 g 2 species in reaction 1.000 SO4-- 1.000 U++++ -6.4525 -6.5191 -6.5800 -6.6467 -6.7073 -6.7626 -6.8133 -6.8599 * used van't Hoff equation to compute logKs Zn(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 185.3922 g 2 species in reaction 2.000 CO3-- 1.000 Zn++ -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 * used van't Hoff equation to compute logKs Zn(HS)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 131.5140 g 3 species in reaction 1.000 Zn++ 2.000 H2S -2.000 H+ -.2365 -.6906 -1.0566 -1.3944 -1.6359 -1.7937 -1.8783 -1.8986 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Zn(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 164.5860 g 3 species in reaction 1.000 Zn++ 3.000 H2S -3.000 H+ 5.9553 5.2741 4.7250 4.2183 3.8561 3.6194 3.4925 3.4621 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Zn(OH)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 * used van't Hoff equation to compute logKs Zn(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 116.3940 g 3 species in reaction 3.000 H2O 1.000 Zn++ -3.000 H+ 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 * used van't Hoff equation to compute logKs Zn(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 133.4020 g 3 species in reaction 4.000 H2O 1.000 Zn++ -4.000 H+ 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 * used van't Hoff equation to compute logKs Zn(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 257.4980 g 2 species in reaction 1.000 Zn++ 2.000 SO4-- -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 * used van't Hoff equation to compute logKs ZnBr+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 145.2740 g 2 species in reaction 1.000 Zn++ 1.000 Br- .5800 .5800 .5800 .5800 .5800 .5800 .5800 .5800 * used van't Hoff equation to compute logKs ZnBr2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 225.1780 g 2 species in reaction 1.000 Zn++ 2.000 Br- .9800 .9800 .9800 .9800 .9800 .9800 .9800 .9800 * used van't Hoff equation to compute logKs ZnCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 100.8230 g 2 species in reaction 1.000 Zn++ 1.000 Cl- .0926 -.1801 -.4300 -.7035 -.9520 -1.1788 -1.3866 -1.5777 * used van't Hoff equation to compute logKs ZnCl2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.2760 g 2 species in reaction 1.000 Zn++ 2.000 Cl- .1202 -.1774 -.4500 -.7484 -1.0196 -1.2670 -1.4938 -1.7023 * used van't Hoff equation to compute logKs ZnCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 171.7290 g 2 species in reaction 1.000 Zn++ 3.000 Cl- .1413 -.1934 -.5000 -.8357 -1.1406 -1.4189 -1.6739 -1.9084 * used van't Hoff equation to compute logKs ZnCl4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 207.1820 g 2 species in reaction 1.000 Zn++ 4.000 Cl- .5353 .1515 -.2000 -.5848 -.9344 -1.2535 -1.5458 -1.8147 * used van't Hoff equation to compute logKs ZnCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 125.3811 g 2 species in reaction 1.000 CO3-- 1.000 Zn++ -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 * used van't Hoff equation to compute logKs ZnF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 84.3684 g 2 species in reaction 1.000 Zn++ 1.000 F- -1.0011 -1.0788 -1.1500 -1.2279 -1.2988 -1.3634 -1.4226 -1.4771 * used van't Hoff equation to compute logKs ZnHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 126.3891 g 3 species in reaction 1.000 CO3-- 1.000 Zn++ 1.000 H+ -12.7286 -12.5573 -12.4289 -12.3217 -12.2571 -12.2281 -12.2289 -12.2552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components ZnI+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 192.2744 g 2 species in reaction 1.000 I- 1.000 Zn++ 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 2.9100 * used van't Hoff equation to compute logKs ZnI2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 319.1788 g 2 species in reaction 2.000 I- 1.000 Zn++ 1.6900 1.6900 1.6900 1.6900 1.6900 1.6900 1.6900 1.6900 * used van't Hoff equation to compute logKs ZnOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 82.3780 g 3 species in reaction 1.000 H2O 1.000 Zn++ -1.000 H+ 9.8590 9.3898 8.9600 8.4895 8.0621 7.6720 7.3145 6.9859 * used van't Hoff equation to compute logKs ZnOHCl charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 117.8310 g 4 species in reaction 1.000 H2O 1.000 Zn++ 1.000 Cl- -1.000 H+ 7.4800 7.4800 7.4800 7.4800 7.4800 7.4800 7.4800 7.4800 * used van't Hoff equation to compute logKs ZnSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 161.4340 g 2 species in reaction 1.000 Zn++ 1.000 SO4-- -2.2788 -2.3264 -2.3700 -2.4177 -2.4611 -2.5007 -2.5370 -2.5704 * used van't Hoff equation to compute logKs -end- 1 free electron e- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 0.0000 g 3 species in reaction .500 H2O -.250 O2(g) -1.000 H+ 23.071575 21.87565 20.7800 19.580675 18.491025 17.496625 16.5855 15.74765 -end- 310 minerals (UO2)3(PO4)2:4w type= formula= (UO2)3(PO4)2:4H2O mole vol.= 0.0000 cc mole wt.= 1072.0986 g 3 species in reaction 4.000 H2O 2.000 PO4--- 3.000 UO2++ -40.1841 -38.7311 -37.4000 -35.9429 -34.6191 -33.4109 -32.3040 -31.2861 * used van't Hoff equation to compute logKs Acanthite type= formula= Ag2S mole vol.= 0.0000 cc mole wt.= 247.8000 g 3 species in reaction 2.000 Ag+ 1.000 H2S -2.000 H+ -32.2739 -30.6349 -29.1083 -27.4058 -25.8263 -24.3535 -22.9742 -21.6769 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Adularia type= formula= KAlSi3O8 mole vol.= 0.0000 cc mole wt.= 278.3364 g 5 species in reaction 1.000 Al+++ -4.000 H2O 3.000 H4SiO4 1.000 K+ -4.000 H+ 2.8878 2.4664 2.0921 1.6968 1.3516 1.0496 .7847 .5520 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Ag2CO3 type= formula= Ag2CO3 mole vol.= 0.0000 cc mole wt.= 275.7471 g 2 species in reaction 2.000 Ag+ 1.000 CO3-- -11.7093 -11.3757 -11.0700 -10.7354 -10.4314 -10.1540 -9.8998 -9.6660 * used van't Hoff equation to compute logKs Ag2O type= formula= Ag2O mole vol.= 0.0000 cc mole wt.= 231.7360 g 3 species in reaction 1.000 H2O 2.000 Ag+ -2.000 H+ 13.2797 12.9145 12.5800 12.2138 11.8811 11.5774 11.2992 11.0434 * used van't Hoff equation to compute logKs Ag2SO4 type= formula= Ag2SO4 mole vol.= 0.0000 cc mole wt.= 311.8000 g 2 species in reaction 2.000 Ag+ 1.000 SO4-- -5.2051 -5.0563 -4.9200 -4.7708 -4.6352 -4.5115 -4.3981 -4.2939 * used van't Hoff equation to compute logKs Ag3PO4 type= formula= Ag3PO4 mole vol.= 0.0000 cc mole wt.= 418.5778 g 2 species in reaction 3.000 Ag+ 1.000 PO4--- -17.5500 -17.5500 -17.5500 -17.5500 -17.5500 -17.5500 -17.5500 -17.5500 * used van't Hoff equation to compute logKs AgF:4H2O type= formula= AgF:4H2O mole vol.= 0.0000 cc mole wt.= 198.9304 g 3 species in reaction 4.000 H2O 1.000 Ag+ 1.000 F- .2635 .4130 .5500 .6999 .8361 .9604 1.0743 1.1791 * used van't Hoff equation to compute logKs AgMetal type= formula= Ag mole vol.= 0.0000 cc mole wt.= 107.8680 g 4 species in reaction .500 H2O 1.000 Ag+ -1.000 H+ -.250 O2(aq) 8.5778 8.2815 8.0100 7.7128 7.4429 7.1965 6.9707 6.7631 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Al(OH)3(a) type= formula= Al(OH)3 mole vol.= 0.0000 cc mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 12.5778 11.6500 10.8000 9.8696 9.0242 8.2528 7.5459 6.8959 * used van't Hoff equation to compute logKs AlAsO4:2H2O type= formula= AlAsO4:2H2O mole vol.= 0.0000 cc mole wt.= 201.9351 g 4 species in reaction 1.000 Al+++ 2.000 H2O 1.000 H3AsO4 -3.000 H+ 5.5032 5.3830 5.2730 5.1525 5.0431 4.9432 4.8517 4.7676 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Albite type= formula= NaAlSi3O8 mole vol.= 0.0000 cc mole wt.= 262.2242 g 5 species in reaction 1.000 Al+++ -4.000 H2O 3.000 H4SiO4 1.000 Na+ -4.000 H+ 5.7891 5.1953 4.6631 4.0949 3.5927 3.1473 2.7511 2.3975 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AlumK type= formula= KAl(SO4)2:12H2O mole vol.= 0.0000 cc mole wt.= 474.4035 g 4 species in reaction 1.000 Al+++ 12.000 H2O 1.000 K+ 2.000 SO4-- -5.6544 -5.4016 -5.1700 -4.9165 -4.6862 -4.4760 -4.2834 -4.1063 * used van't Hoff equation to compute logKs Alunite type= formula= KAl3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 414.2225 g 5 species in reaction 3.000 Al+++ 6.000 H2O 1.000 K+ -6.000 H+ 2.000 SO4-- 1.9711 .2118 -1.4000 -3.1643 -4.7673 -6.2301 -7.5705 -8.8030 * used van't Hoff equation to compute logKs Analcime type= formula= NaAlSi2O6:H2O mole vol.= 0.0000 cc mole wt.= 220.1559 g 5 species in reaction 1.000 Al+++ -1.000 H2O 2.000 H4SiO4 1.000 Na+ -4.000 H+ 11.6060 10.7430 9.9641 9.1259 8.3784 7.7091 7.1078 6.5656 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Anglesite type= formula= PbSO4 mole vol.= 0.0000 cc mole wt.= 303.2540 g 2 species in reaction 1.000 SO4-- 1.000 Pb++ -7.9342 -7.8590 -7.7900 -7.7145 -7.6459 -7.5833 -7.5260 -7.4733 * used van't Hoff equation to compute logKs Anhydrite type= formula= CaSO4 mole vol.= 0.0000 cc mole wt.= 136.1440 g 2 species in reaction 1.000 SO4-- 1.000 Ca++ -4.3661 -4.3343 -4.3608 -4.4566 -4.6102 -4.8109 -5.0503 -5.3216 * used analytic equation to compute logKs Anilite type= formula= Cu0.25Cu1.5S mole vol.= 0.0000 cc mole wt.= 143.2695 g 4 species in reaction .250 Cu++ 1.000 H2S 1.500 Cu+ -2.000 H+ -27.4468 -26.1497 -24.9363 -23.5767 -22.3087 -21.1202 -20.0013 -18.9436 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Annite type= formula= KFe3AlSi3O10(OH)2 mole vol.= 0.0000 cc mole wt.= 511.8934 g 5 species in reaction 1.000 Al+++ 3.000 Fe++ 3.000 H4SiO4 1.000 K+ -10.000 H+ 25.3444 23.0108 21.0173 18.9948 17.3057 15.8933 14.7146 13.7363 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Anorthite type= formula= CaAl2Si2O8 mole vol.= 0.0000 cc mole wt.= 278.2116 g 4 species in reaction 2.000 Al+++ 2.000 H4SiO4 -8.000 H+ 1.000 Ca++ 30.5659 27.9704 25.6163 23.0679 20.7807 18.7193 16.8543 15.1609 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Antlerite type= formula= Cu3(OH)4SO4 mole vol.= 0.0000 cc mole wt.= 354.7340 g 4 species in reaction 4.000 H2O 3.000 Cu++ -4.000 H+ 1.000 SO4-- 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 * used van't Hoff equation to compute logKs Aragonite type= formula= CaCO3 mole vol.= 0.0000 cc mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -8.2180 -8.2667 -8.3361 -8.4462 -8.5850 -8.7519 -8.9459 -9.1659 * used analytic equation to compute logKs Arsenolite type= formula= As2O3 mole vol.= 0.0000 cc mole wt.= 197.8432 g 3 species in reaction -5.000 H2O 2.000 H3AsO4 2.000 H2 -50.6290 -48.4115 -46.3800 -44.1562 -42.1358 -40.2919 -38.6025 -37.0490 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Artinite type= formula= MgCO3:Mg(OH)2:3H2O mole vol.= 0.0000 cc mole wt.= 196.6991 g 4 species in reaction 5.000 H2O 2.000 Mg++ 1.000 CO3-- -2.000 H+ 11.5282 10.5219 9.6000 8.5909 7.6740 6.8373 6.0706 5.3656 * used van't Hoff equation to compute logKs As2O5 type= formula= As2O5 mole vol.= 0.0000 cc mole wt.= 229.8432 g 2 species in reaction -3.000 H2O 2.000 H3AsO4 7.0616 6.8724 6.6990 6.5092 6.3368 6.1795 6.0353 5.9027 * used van't Hoff equation to compute logKs As2S3(am) type= formula= As2S3 mole vol.= 0.0000 cc mole wt.= 246.0352 g 4 species in reaction -8.000 H2O 2.000 H3AsO4 2.000 H2 3.000 H2S -75.5276 -72.1993 -69.0750 -65.5608 -62.2697 -59.1725 -56.2447 -53.4661 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AsI3 type= formula= AsI3 mole vol.= 0.0000 cc mole wt.= 455.6348 g 5 species in reaction -4.000 H2O 3.000 I- 1.000 H3AsO4 1.000 H2 3.000 H+ -20.3545 -19.3058 -18.3450 -17.2933 -16.3378 -15.4658 -14.6669 -13.9321 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Atacamite type= formula= Cu2(OH)3Cl mole vol.= 0.0000 cc mole wt.= 213.5690 g 4 species in reaction 3.000 H2O 1.000 Cl- 2.000 Cu++ -3.000 H+ 8.5938 7.9395 7.3400 6.6838 6.0876 5.5435 5.0450 4.5865 * used van't Hoff equation to compute logKs Autunite type= formula= Ca(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 770.0856 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 1.000 Ca++ -42.9650 -43.4670 -43.9270 -44.4305 -44.8879 -45.3054 -45.6879 -46.0396 * used van't Hoff equation to compute logKs Azurite type= formula= Cu3(OH)2(CO3)2 mole vol.= 0.0000 cc mole wt.= 344.6762 g 4 species in reaction 2.000 H2O 2.000 CO3-- 3.000 Cu++ -2.000 H+ -15.4362 -16.1744 -16.9077 -17.7772 -18.6329 -19.4734 -20.2985 -21.1084 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components B-UO type= formula= UO2(OH)2 mole vol.= 0.0000 cc mole wt.= 304.0450 g 3 species in reaction 2.000 H2O 1.000 UO2++ -2.000 H+ 6.4651 5.9844 5.5440 5.0619 4.6239 4.2242 3.8580 3.5212 * used van't Hoff equation to compute logKs Ba3(AsO4)2 type= formula= Ba3(AsO4)2 mole vol.= 0.0000 cc mole wt.= 689.8632 g 3 species in reaction 3.000 Ba++ 2.000 H3AsO4 -6.000 H+ -8.0670 -7.9746 -7.8900 -7.7974 -7.7132 -7.6364 -7.5660 -7.5013 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components BaF2 type= formula= BaF2 mole vol.= 0.0000 cc mole wt.= 175.3368 g 2 species in reaction 1.000 Ba++ 2.000 F- -5.8271 -5.7921 -5.7600 -5.7249 -5.6930 -5.6639 -5.6372 -5.6127 * used van't Hoff equation to compute logKs Barite type= formula= BaSO4 mole vol.= 0.0000 cc mole wt.= 233.4040 g 2 species in reaction 1.000 Ba++ 1.000 SO4-- -10.4798 -10.1937 -9.9704 -9.7724 -9.6387 -9.5589 -9.5245 -9.5283 * used analytic equation to compute logKs Basaluminite type= formula= Al4(OH)10SO4 mole vol.= 0.0000 cc mole wt.= 374.0700 g 4 species in reaction 4.000 Al+++ 10.000 H2O -10.000 H+ 1.000 SO4-- 22.7000 22.7000 22.7000 22.7000 22.7000 22.7000 22.7000 22.7000 * used van't Hoff equation to compute logKs BaSeO3 type= formula= BaSeO3 mole vol.= 0.0000 cc mole wt.= 264.3000 g 2 species in reaction 1.000 SeO3-- 1.000 Ba++ -6.3900 -6.3900 -6.3900 -6.3900 -6.3900 -6.3900 -6.3900 -6.3900 * used van't Hoff equation to compute logKs Bassetite type= formula= Fe(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 785.8526 g 3 species in reaction 1.000 Fe++ 2.000 PO4--- 2.000 UO2++ -43.1500 -43.8467 -44.4850 -45.1837 -45.8185 -46.3978 -46.9286 -47.4167 * used van't Hoff equation to compute logKs Beidellite type= formula= (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 mole vol.= 0.0000 cc mole wt.= 368.1195 g 7 species in reaction 2.330 Al+++ -2.680 H2O .055 Mg++ 3.670 H4SiO4 .110 K+ .110 Na+ -7.320 H+ 10.1601 8.7772 7.5378 6.2143 5.0448 4.0075 3.0847 2.2615 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Bianchite type= formula= ZnSO4:6H2O mole vol.= 0.0000 cc mole wt.= 269.5300 g 3 species in reaction 6.000 H2O 1.000 Zn++ 1.000 SO4-- -1.7543 -1.7599 -1.7650 -1.7706 -1.7757 -1.7804 -1.7846 -1.7886 * used van't Hoff equation to compute logKs Birnessite type= formula= MnO2 mole vol.= 0.0000 cc mole wt.= 86.9380 g 4 species in reaction 1.000 H2O -2.000 H+ .500 O2(aq) 1.000 Mn++ -3.9603 -1.6007 .5610 2.9273 5.0772 7.0391 8.8368 10.4899 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Bixbyite type= formula= Mn2O3 mole vol.= 0.0000 cc mole wt.= 157.8760 g 3 species in reaction 3.000 H2O 2.000 Mn+++ -6.000 H+ .4117 -.1220 -.6110 -1.1463 -1.6326 -2.0764 -2.4830 -2.8569 * used van't Hoff equation to compute logKs BlaubleiI type= formula= Cu0.9Cu0.2S mole vol.= 0.0000 cc mole wt.= 101.9646 g 4 species in reaction .900 Cu++ 1.000 H2S .200 Cu+ -2.000 H+ -16.8102 -17.0373 -17.2203 -17.3892 -17.5100 -17.5889 -17.6312 -17.6413 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components BlaubleiII type= formula= Cu0.6Cu0.8S mole vol.= 0.0000 cc mole wt.= 121.0284 g 4 species in reaction .600 Cu++ 1.000 H2S .800 Cu+ -2.000 H+ -19.9272 -20.1543 -20.3373 -20.5062 -20.6270 -20.7059 -20.7482 -20.7583 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Boehmite type= formula= AlOOH mole vol.= 0.0000 cc mole wt.= 59.9895 g 3 species in reaction 1.000 Al+++ 2.000 H2O -3.000 H+ 10.4746 9.4879 8.5840 7.5946 6.6956 5.8752 5.1235 4.4323 * used van't Hoff equation to compute logKs Brochantite type= formula= Cu4(OH)6SO4 mole vol.= 0.0000 cc mole wt.= 452.2960 g 4 species in reaction 6.000 H2O 4.000 Cu++ -6.000 H+ 1.000 SO4-- 15.3400 15.3400 15.3400 15.3400 15.3400 15.3400 15.3400 15.3400 * used van't Hoff equation to compute logKs Bromyrite type= formula= AgBr mole vol.= 0.0000 cc mole wt.= 187.7720 g 2 species in reaction 1.000 Ag+ 1.000 Br- -13.6231 -12.9170 -12.2700 -11.5618 -10.9184 -10.3312 -9.7932 -9.2985 * used van't Hoff equation to compute logKs Brucite type= formula= Mg(OH)2 mole vol.= 0.0000 cc mole wt.= 58.3280 g 3 species in reaction 2.000 H2O 1.000 Mg++ -2.000 H+ 18.6580 17.7092 16.8400 15.8885 15.0240 14.2351 13.5123 12.8475 * used van't Hoff equation to compute logKs Bunsenite type= formula= NiO mole vol.= 0.0000 cc mole wt.= 74.7100 g 3 species in reaction 1.000 H2O 1.000 Ni++ -2.000 H+ 14.0547 13.2172 12.4500 11.6102 10.8471 10.1508 9.5127 8.9260 * used van't Hoff equation to compute logKs Ca3(AsO4)2:4w type= formula= Ca3(AsO4)2:4H2O mole vol.= 0.0000 cc mole wt.= 470.1472 g 4 species in reaction 4.000 H2O 2.000 H3AsO4 -6.000 H+ 3.000 Ca++ 23.7753 23.5351 23.3150 23.0741 22.8552 22.6555 22.4725 22.3042 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Calcite type= formula= CaCO3 mole vol.= 0.0000 cc mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -8.3814 -8.4199 -8.4798 -8.5797 -8.7092 -8.8675 -9.0537 -9.2665 * used analytic equation to compute logKs CaSeO3 type= formula= CaSeO3 mole vol.= 0.0000 cc mole wt.= 167.0400 g 2 species in reaction 1.000 SeO3-- 1.000 Ca++ -5.6000 -5.6000 -5.6000 -5.6000 -5.6000 -5.6000 -5.6000 -5.6000 * used van't Hoff equation to compute logKs Cd(BO2)2 type= formula= Cd(BO2)2 mole vol.= 0.0000 cc mole wt.= 198.0200 g 4 species in reaction 1.000 Cd++ -2.000 H2O 2.000 H3BO3 -2.000 H+ 9.8400 9.8400 9.8400 9.8400 9.8400 9.8400 9.8400 9.8400 * used van't Hoff equation to compute logKs Cd(gamma) type= formula= Cd mole vol.= 0.0000 cc mole wt.= 112.4000 g 4 species in reaction 1.000 Cd++ 1.000 H2O -2.000 H+ -.500 O2(aq) 62.3682 59.3736 56.6300 53.6268 50.8982 48.4082 46.1267 44.0287 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Cd(OH)2 type= formula= Cd(OH)2 mole vol.= 0.0000 cc mole wt.= 146.4160 g 3 species in reaction 1.000 Cd++ 2.000 H2O -2.000 H+ 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 * used van't Hoff equation to compute logKs Cd(OH)2(a) type= formula= Cd(OH)2 mole vol.= 0.0000 cc mole wt.= 146.4160 g 3 species in reaction 1.000 Cd++ 2.000 H2O -2.000 H+ 15.1234 14.3962 13.7300 13.0008 12.3382 11.7335 11.1795 10.6701 * used van't Hoff equation to compute logKs Cd3(OH)2(SO4)2 type= formula= Cd3(OH)2(SO4)2 mole vol.= 0.0000 cc mole wt.= 563.3440 g 4 species in reaction 3.000 Cd++ 2.000 H2O -2.000 H+ 2.000 SO4-- 6.7100 6.7100 6.7100 6.7100 6.7100 6.7100 6.7100 6.7100 * used van't Hoff equation to compute logKs Cd3(OH)4SO4 type= formula= Cd3(OH)4SO4 mole vol.= 0.0000 cc mole wt.= 501.2960 g 4 species in reaction 3.000 Cd++ 4.000 H2O -4.000 H+ 1.000 SO4-- 22.5600 22.5600 22.5600 22.5600 22.5600 22.5600 22.5600 22.5600 * used van't Hoff equation to compute logKs Cd3(PO4)2 type= formula= Cd3(PO4)2 mole vol.= 0.0000 cc mole wt.= 527.1476 g 2 species in reaction 3.000 Cd++ 2.000 PO4--- -32.6000 -32.6000 -32.6000 -32.6000 -32.6000 -32.6000 -32.6000 -32.6000 * used van't Hoff equation to compute logKs Cd4(OH)6SO4 type= formula= Cd4(OH)6SO4 mole vol.= 0.0000 cc mole wt.= 647.7120 g 4 species in reaction 4.000 Cd++ 6.000 H2O -6.000 H+ 1.000 SO4-- 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 * used van't Hoff equation to compute logKs CdBr2:4H2O type= formula= CdBr2:4H2O mole vol.= 0.0000 cc mole wt.= 344.2720 g 3 species in reaction 1.000 Cd++ 4.000 H2O 2.000 Br- -2.9050 -2.6519 -2.4200 -2.1662 -1.9355 -1.7250 -1.5322 -1.3548 * used van't Hoff equation to compute logKs CdCl2 type= formula= CdCl2 mole vol.= 0.0000 cc mole wt.= 183.3060 g 2 species in reaction 1.000 Cd++ 2.000 Cl- -.3801 -.5366 -.6800 -.8369 -.9795 -1.1097 -1.2289 -1.3385 * used van't Hoff equation to compute logKs CdCl2:2.5H2O type= formula= CdCl2:2.5H2O mole vol.= 0.0000 cc mole wt.= 228.3460 g 3 species in reaction 1.000 Cd++ 2.500 H2O 2.000 Cl- -2.0547 -1.9948 -1.9400 -1.8800 -1.8254 -1.7756 -1.7300 -1.6881 * used van't Hoff equation to compute logKs CdCl2:H2O type= formula= CdCl2:H2O mole vol.= 0.0000 cc mole wt.= 201.3220 g 3 species in reaction 1.000 Cd++ 1.000 H2O 2.000 Cl- -1.5879 -1.6516 -1.7100 -1.7739 -1.8320 -1.8849 -1.9335 -1.9781 * used van't Hoff equation to compute logKs CdF2 type= formula= CdF2 mole vol.= 0.0000 cc mole wt.= 150.3968 g 2 species in reaction 1.000 Cd++ 2.000 F- -2.3279 -2.6682 -2.9800 -3.3213 -3.6313 -3.9143 -4.1736 -4.4120 * used van't Hoff equation to compute logKs CdI2 type= formula= CdI2 mole vol.= 0.0000 cc mole wt.= 366.2088 g 2 species in reaction 1.000 Cd++ 2.000 I- -3.8837 -3.7409 -3.6100 -3.4668 -3.3366 -3.2178 -3.1090 -3.0089 * used van't Hoff equation to compute logKs CdMetal type= formula= Cd mole vol.= 0.0000 cc mole wt.= 112.4000 g 4 species in reaction 1.000 Cd++ 1.000 H2O -2.000 H+ -.500 O2(aq) 62.2588 59.2691 56.5300 53.5318 50.8076 48.3217 46.0439 43.9493 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CdOHCl type= formula= CdOHCl mole vol.= 0.0000 cc mole wt.= 164.8610 g 4 species in reaction 1.000 Cd++ 1.000 H2O 1.000 Cl- -1.000 H+ 4.0169 3.7576 3.5200 3.2599 3.0237 2.8080 2.6105 2.4288 * used van't Hoff equation to compute logKs CdSiO3 type= formula= CdSiO3 mole vol.= 0.0000 cc mole wt.= 188.4843 g 4 species in reaction 1.000 Cd++ -1.000 H2O 1.000 H4SiO4 -2.000 H+ 10.1756 9.5934 9.0600 8.4761 7.9456 7.4615 7.0179 6.6100 * used van't Hoff equation to compute logKs CdSO4 type= formula= CdSO4 mole vol.= 0.0000 cc mole wt.= 208.4640 g 2 species in reaction 1.000 Cd++ 1.000 SO4-- .8889 .3728 -.1000 -.6175 -1.0877 -1.5168 -1.9100 -2.2716 * used van't Hoff equation to compute logKs CdSO4:2.7H2O type= formula= CdSO4:2.67H2O mole vol.= 0.0000 cc mole wt.= 256.5667 g 3 species in reaction 1.000 Cd++ 2.670 H2O 1.000 SO4-- -1.5845 -1.7351 -1.8730 -2.0240 -2.1611 -2.2863 -2.4010 -2.5065 * used van't Hoff equation to compute logKs CdSO4:H2O type= formula= CdSO4:H2O mole vol.= 0.0000 cc mole wt.= 226.4800 g 3 species in reaction 1.000 Cd++ 1.000 H2O 1.000 SO4-- -1.1525 -1.4158 -1.6570 -1.9210 -2.1609 -2.3798 -2.5804 -2.7649 * used van't Hoff equation to compute logKs Celestite type= formula= SrSO4 mole vol.= 0.0000 cc mole wt.= 183.6840 g 2 species in reaction 1.000 Sr++ 1.000 SO4-- -6.7028 -6.6246 -6.6321 -6.6888 -6.7658 -6.8590 -6.9826 -7.1606 * used analytic equation to compute logKs Cerargyrite type= formula= AgCl mole vol.= 0.0000 cc mole wt.= 143.3210 g 2 species in reaction 1.000 Ag+ 1.000 Cl- -10.8000 -10.2520 -9.7500 -9.2005 -8.7011 -8.2455 -7.8280 -7.4441 * used van't Hoff equation to compute logKs Cerrusite type= formula= PbCO3 mole vol.= 0.0000 cc mole wt.= 267.2011 g 2 species in reaction 1.000 CO3-- 1.000 Pb++ -13.4560 -13.2859 -13.1300 -12.9594 -12.8043 -12.6628 -12.5332 -12.4140 * used van't Hoff equation to compute logKs Chalcanthite type= formula= CuSO4:5H2O mole vol.= 0.0000 cc mole wt.= 249.6900 g 3 species in reaction 5.000 H2O 1.000 Cu++ 1.000 SO4-- -2.7366 -2.6862 -2.6400 -2.5894 -2.5435 -2.5016 -2.4632 -2.4279 * used van't Hoff equation to compute logKs Chalcedony type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -3.8681 -3.7028 -3.5513 -3.3855 -3.2349 -3.0974 -2.9715 -2.8556 * used analytic equation to compute logKs Chalcocite type= formula= Cu2S mole vol.= 0.0000 cc mole wt.= 159.1560 g 3 species in reaction 1.000 H2S 2.000 Cu+ -2.000 H+ -30.5780 -29.0772 -27.6773 -26.1135 -24.6600 -23.3022 -22.0282 -20.8279 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Chalcopyrite type= formula= CuFeS2 mole vol.= 0.0000 cc mole wt.= 183.5210 g 4 species in reaction 1.000 Fe++ 1.000 Cu++ 2.000 H2S -4.000 H+ -22.9467 -22.1586 -21.3866 -20.4787 -19.5884 -18.7133 -17.8515 -17.0015 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Chlorite14A type= formula= Mg5Al2Si3O10(OH)8 mole vol.= 0.0000 cc mole wt.= 555.8399 g 5 species in reaction 2.000 Al+++ 6.000 H2O 3.000 H4SiO4 5.000 Mg++ -16.000 H+ 78.5432 73.2392 68.3800 63.0610 58.2283 53.8181 49.7773 46.0613 * used van't Hoff equation to compute logKs Chlorite7A type= formula= Mg5Al2Si3O10(OH)8 mole vol.= 0.0000 cc mole wt.= 555.8399 g 5 species in reaction 2.000 Al+++ 6.000 H2O 3.000 H4SiO4 5.000 Mg++ -16.000 H+ 82.1679 76.7320 71.7520 66.3008 61.3479 56.8280 52.6867 48.8784 * used van't Hoff equation to compute logKs Chrysotile type= formula= Mg3Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 277.1366 g 4 species in reaction 1.000 H2O 2.000 H4SiO4 3.000 Mg++ -6.000 H+ 35.5729 33.8158 32.2011 30.4276 28.8105 27.3293 25.9673 24.7103 * used analytic equation to compute logKs Claudetite type= formula= As2O3 mole vol.= 0.0000 cc mole wt.= 197.8432 g 3 species in reaction -5.000 H2O 2.000 H3AsO4 2.000 H2 -50.5634 -48.3593 -46.3400 -44.1296 -42.1213 -40.2886 -38.6094 -37.0652 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Clinoenstatite type= formula= MgSiO3 mole vol.= 0.0000 cc mole wt.= 100.3963 g 4 species in reaction -1.000 H2O 1.000 H4SiO4 1.000 Mg++ -2.000 H+ 12.6870 11.9851 11.3420 10.6381 9.9985 9.4148 8.8801 8.3883 * used van't Hoff equation to compute logKs Clpyromorphite type= formula= Pb5(PO4)3Cl mole vol.= 0.0000 cc mole wt.= 1356.3244 g 3 species in reaction 3.000 PO4--- 1.000 Cl- 5.000 Pb++ -84.4300 -84.4300 -84.4300 -84.4300 -84.4300 -84.4300 -84.4300 -84.4300 * used van't Hoff equation to compute logKs Coffinite type= formula= USiO4 mole vol.= 0.0000 cc mole wt.= 330.1133 g 3 species in reaction 1.000 H4SiO4 -4.000 H+ 1.000 U++++ -6.8918 -7.2979 -7.6700 -8.0773 -8.4473 -8.7850 -9.0944 -9.3790 * used van't Hoff equation to compute logKs Cotunnite type= formula= PbCl2 mole vol.= 0.0000 cc mole wt.= 278.0960 g 2 species in reaction 2.000 Cl- 1.000 Pb++ -5.1457 -4.9496 -4.7700 -4.5734 -4.3947 -4.2317 -4.0823 -3.9450 * used van't Hoff equation to compute logKs Covellite type= formula= CuS mole vol.= 0.0000 cc mole wt.= 95.6100 g 3 species in reaction 1.000 Cu++ 1.000 H2S -2.000 H+ -16.5290 -15.9154 -15.3283 -14.6542 -14.0090 -13.3890 -12.7908 -12.2120 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Cristobalite type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -3.9560 -3.7634 -3.5870 -3.3939 -3.2184 -3.0583 -2.9116 -2.7767 * used van't Hoff equation to compute logKs Cu(OH)2 type= formula= Cu(OH)2 mole vol.= 0.0000 cc mole wt.= 97.5620 g 3 species in reaction 2.000 H2O 1.000 Cu++ -2.000 H+ 9.6631 9.1291 8.6400 8.1046 7.6181 7.1741 6.7674 6.3933 * used van't Hoff equation to compute logKs Cu2(OH)3NO3 type= formula= Cu2(OH)3NO3 mole vol.= 0.0000 cc mole wt.= 240.1227 g 4 species in reaction 3.000 H2O 2.000 Cu++ -3.000 H+ 1.000 NO3- 10.4039 9.7965 9.2400 8.6308 8.0774 7.5723 7.1095 6.6839 * used van't Hoff equation to compute logKs Cu2SO4 type= formula= Cu2SO4 mole vol.= 0.0000 cc mole wt.= 223.1560 g 2 species in reaction 2.000 Cu+ 1.000 SO4-- -1.6441 -1.8037 -1.9500 -2.1101 -2.2556 -2.3883 -2.5099 -2.6218 * used van't Hoff equation to compute logKs Cu3(AsO4)2:6w type= formula= Cu3(AsO4)2:6H2O mole vol.= 0.0000 cc mole wt.= 576.5772 g 4 species in reaction 6.000 H2O 2.000 H3AsO4 3.000 Cu++ -6.000 H+ 7.5573 7.3171 7.0970 6.8561 6.6372 6.4375 6.2545 6.0862 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Cu3(PO4)2 type= formula= Cu3(PO4)2 mole vol.= 0.0000 cc mole wt.= 380.5856 g 2 species in reaction 2.000 PO4--- 3.000 Cu++ -36.8500 -36.8500 -36.8500 -36.8500 -36.8500 -36.8500 -36.8500 -36.8500 * used van't Hoff equation to compute logKs Cu3(PO4)2:3H2O type= formula= Cu3(PO4)2:3H2O mole vol.= 0.0000 cc mole wt.= 434.6336 g 3 species in reaction 3.000 H2O 2.000 PO4--- 3.000 Cu++ -35.1200 -35.1200 -35.1200 -35.1200 -35.1200 -35.1200 -35.1200 -35.1200 * used van't Hoff equation to compute logKs CuBr type= formula= CuBr mole vol.= 0.0000 cc mole wt.= 143.4500 g 2 species in reaction 1.000 Cu+ 1.000 Br- -9.0875 -8.6295 -8.2100 -7.7508 -7.3335 -6.9527 -6.6038 -6.2830 * used van't Hoff equation to compute logKs CuCO3 type= formula= CuCO3 mole vol.= 0.0000 cc mole wt.= 123.5571 g 2 species in reaction 1.000 CO3-- 1.000 Cu++ -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 * used van't Hoff equation to compute logKs CuF type= formula= CuF mole vol.= 0.0000 cc mole wt.= 82.5444 g 2 species in reaction 1.000 F- 1.000 Cu+ 7.9099 7.4768 7.0800 6.6457 6.2511 5.8910 5.5610 5.2576 * used van't Hoff equation to compute logKs CuF2 type= formula= CuF2 mole vol.= 0.0000 cc mole wt.= 101.5428 g 2 species in reaction 2.000 F- 1.000 Cu++ .2736 -.1928 -.6200 -1.0877 -1.5126 -1.9003 -2.2556 -2.5824 * used van't Hoff equation to compute logKs CuF2:2H2O type= formula= CuF2:2H2O mole vol.= 0.0000 cc mole wt.= 137.5748 g 3 species in reaction 2.000 H2O 2.000 F- 1.000 Cu++ -4.3051 -4.4329 -4.5500 -4.6782 -4.7946 -4.9008 -4.9982 -5.0877 * used van't Hoff equation to compute logKs CuI type= formula= CuI mole vol.= 0.0000 cc mole wt.= 190.4504 g 2 species in reaction 1.000 I- 1.000 Cu+ -13.2411 -12.5360 -11.8900 -11.1829 -10.5404 -9.9541 -9.4169 -8.9229 * used van't Hoff equation to compute logKs CuMetal type= formula= Cu mole vol.= 0.0000 cc mole wt.= 63.5460 g 4 species in reaction .500 H2O 1.000 Cu+ -1.000 H+ -.250 O2(aq) 13.8715 13.2914 12.7600 12.1783 11.6498 11.1675 10.7256 10.3192 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CuOCuSO4 type= formula= CuO:CuSO4 mole vol.= 0.0000 cc mole wt.= 239.1560 g 4 species in reaction 1.000 H2O 2.000 Cu++ -2.000 H+ 1.000 SO4-- 13.9166 12.6711 11.5300 10.2810 9.1461 8.1105 7.1616 6.2890 * used van't Hoff equation to compute logKs CupricFerrite type= formula= CuFe2O4 mole vol.= 0.0000 cc mole wt.= 239.2400 g 4 species in reaction 4.000 H2O 1.000 Cu++ 2.000 Fe+++ -8.000 H+ 8.4756 7.1210 5.8800 4.5216 3.2874 2.1610 1.1291 .1800 * used van't Hoff equation to compute logKs Cuprite type= formula= Cu2O mole vol.= 0.0000 cc mole wt.= 143.0920 g 3 species in reaction 1.000 H2O 2.000 Cu+ -2.000 H+ -1.9690 -1.7503 -1.5500 -1.3307 -1.1315 -.9497 -.7831 -.6300 * used van't Hoff equation to compute logKs CuprousFerrite type= formula= CuFeO2 mole vol.= 0.0000 cc mole wt.= 151.3930 g 4 species in reaction 2.000 H2O 1.000 Fe+++ 1.000 Cu+ -4.000 H+ -8.6651 -8.7981 -8.9200 -9.0534 -9.1746 -9.2853 -9.3866 -9.4798 * used van't Hoff equation to compute logKs CuSO4 type= formula= CuSO4 mole vol.= 0.0000 cc mole wt.= 159.6100 g 2 species in reaction 1.000 Cu++ 1.000 SO4-- 4.2269 3.5918 3.0100 2.3731 1.7944 1.2663 .7825 .3375 * used van't Hoff equation to compute logKs Diaspore type= formula= AlOOH mole vol.= 0.0000 cc mole wt.= 59.9895 g 3 species in reaction 1.000 Al+++ 2.000 H2O -3.000 H+ 8.5348 7.6707 6.8790 6.0124 5.2251 4.5066 3.8483 3.2429 * used van't Hoff equation to compute logKs Diopside type= formula= CaMgSi2O6 mole vol.= 0.0000 cc mole wt.= 216.5606 g 5 species in reaction -2.000 H2O 2.000 H4SiO4 1.000 Mg++ -4.000 H+ 1.000 Ca++ 22.0641 20.9316 19.8940 18.7583 17.7263 16.7846 15.9218 15.1284 * used van't Hoff equation to compute logKs Dioptase type= formula= CuSiO3:H2O mole vol.= 0.0000 cc mole wt.= 157.6463 g 3 species in reaction 1.000 H4SiO4 1.000 Cu++ -2.000 H+ 7.1011 6.7874 6.5000 6.1854 5.8996 5.6387 5.3998 5.1800 * used van't Hoff equation to compute logKs Djurleite type= formula= Cu0.066Cu1.868S mole vol.= 0.0000 cc mole wt.= 154.9620 g 4 species in reaction .066 Cu++ 1.000 H2S 1.868 Cu+ -2.000 H+ -29.7804 -28.3311 -26.9783 -25.4661 -24.0594 -22.7444 -21.5096 -20.3453 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Dolomite type= formula= CaMg(CO3)2 mole vol.= 0.0000 cc mole wt.= 184.4142 g 3 species in reaction 1.000 Mg++ 2.000 CO3-- 1.000 Ca++ -16.4570 -16.7873 -17.0900 -17.4213 -17.7223 -17.9970 -18.2487 -18.4801 * used van't Hoff equation to compute logKs Dolomite(d) type= formula= CaMg(CO3)2 mole vol.= 0.0000 cc mole wt.= 184.4142 g 3 species in reaction 1.000 Mg++ 2.000 CO3-- 1.000 Ca++ -15.7960 -16.1843 -16.5400 -16.9294 -17.2831 -17.6060 -17.9018 -18.1738 * used van't Hoff equation to compute logKs Epsomite type= formula= MgSO4:7H2O mole vol.= 0.0000 cc mole wt.= 246.4880 g 3 species in reaction 7.000 H2O 1.000 Mg++ 1.000 SO4-- -2.3292 -2.2305 -2.1400 -2.0410 -1.9510 -1.8689 -1.7937 -1.7245 * used van't Hoff equation to compute logKs FCO3Apatite type= formula= Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 mole vol.= 0.0000 cc mole wt.= 960.1661 g 6 species in reaction .144 Mg++ 1.200 CO3-- 4.800 PO4--- 2.480 F- .360 Na+ 9.316 Ca++ -117.0425 -115.6634 -114.4000 -113.0170 -111.7605 -110.6137 -109.5631 -108.5969 * used van't Hoff equation to compute logKs Fe(OH)2.7Cl.3 type= formula= Fe(OH)2.7Cl0.3 mole vol.= 0.0000 cc mole wt.= 112.4045 g 4 species in reaction 2.700 H2O .300 Cl- 1.000 Fe+++ -2.700 H+ -3.0400 -3.0400 -3.0400 -3.0400 -3.0400 -3.0400 -3.0400 -3.0400 * used van't Hoff equation to compute logKs Fe(OH)3(a) type= formula= Fe(OH)3 mole vol.= 0.0000 cc mole wt.= 106.8710 g 3 species in reaction 3.000 H2O 1.000 Fe+++ -3.000 H+ 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 * used van't Hoff equation to compute logKs Fe2(SeO3)3 type= formula= Fe2(SeO3)3 mole vol.= 0.0000 cc mole wt.= 492.5740 g 2 species in reaction 3.000 SeO3-- 2.000 Fe+++ -35.4300 -35.4300 -35.4300 -35.4300 -35.4300 -35.4300 -35.4300 -35.4300 * used van't Hoff equation to compute logKs Fe3(OH)8 type= formula= Fe3(OH)8 mole vol.= 0.0000 cc mole wt.= 303.6050 g 4 species in reaction 1.000 Fe++ 8.000 H2O 2.000 Fe+++ -8.000 H+ 20.2220 20.2220 20.2220 20.2220 20.2220 20.2220 20.2220 20.2220 * used van't Hoff equation to compute logKs FeS(ppt) type= formula= FeS mole vol.= 0.0000 cc mole wt.= 87.9110 g 3 species in reaction 1.000 Fe++ 1.000 H2S -2.000 H+ 3.4368 3.2097 3.0267 2.8578 2.7370 2.6581 2.6158 2.6057 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeSe2 type= formula= FeSe2 mole vol.= 0.0000 cc mole wt.= 213.7670 g 4 species in reaction 1.000 Fe++ -1.000 H2O 2.000 HSe- .500 O2(aq) -66.1413 -63.7817 -61.6200 -59.2537 -57.1038 -55.1419 -53.3442 -51.6911 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Fluorapatite type= formula= Ca5(PO4)3F mole vol.= 0.0000 cc mole wt.= 504.3198 g 3 species in reaction 3.000 PO4--- 1.000 F- 5.000 Ca++ -54.0020 -54.3339 -54.6380 -54.9708 -55.2733 -55.5492 -55.8021 -56.0346 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Fluorite type= formula= CaF2 mole vol.= 0.0000 cc mole wt.= 78.0768 g 2 species in reaction 2.000 F- 1.000 Ca++ -10.9580 -10.7605 -10.5997 -10.4478 -10.3339 -10.2519 -10.1969 -10.1648 * used analytic equation to compute logKs Forsterite type= formula= Mg2SiO4 mole vol.= 0.0000 cc mole wt.= 140.7083 g 3 species in reaction 1.000 H4SiO4 2.000 Mg++ -4.000 H+ 31.5649 29.8642 28.3060 26.6004 25.0508 23.6366 22.3409 21.1493 * used van't Hoff equation to compute logKs Galena type= formula= PbS mole vol.= 0.0000 cc mole wt.= 239.2540 g 3 species in reaction 1.000 H2S -2.000 H+ 1.000 Pb++ -6.7297 -6.2776 -5.8383 -5.3261 -4.8280 -4.3421 -3.8669 -3.4012 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Gibbsite type= formula= Al(OH)3 mole vol.= 0.0000 cc mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 9.6396 8.8413 8.1100 7.3095 6.5822 5.9184 5.3103 4.7510 * used van't Hoff equation to compute logKs Goethite type= formula= FeOOH mole vol.= 0.0000 cc mole wt.= 88.8550 g 3 species in reaction 2.000 H2O 1.000 Fe+++ -3.000 H+ -.0286 -.5355 -1.0000 -1.5084 -1.9703 -2.3918 -2.7781 -3.1332 * used van't Hoff equation to compute logKs Goslarite type= formula= ZnSO4:7H2O mole vol.= 0.0000 cc mole wt.= 287.5460 g 3 species in reaction 7.000 H2O 1.000 Zn++ 1.000 SO4-- -2.1814 -2.0658 -1.9600 -1.8441 -1.7389 -1.6428 -1.5548 -1.4738 * used van't Hoff equation to compute logKs Greenalite type= formula= Fe3Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 371.7416 g 4 species in reaction 3.000 Fe++ 1.000 H2O 2.000 H4SiO4 -6.000 H+ 20.8100 20.8100 20.8100 20.8100 20.8100 20.8100 20.8100 20.8100 * used van't Hoff equation to compute logKs Greenockite type= formula= CdS mole vol.= 0.0000 cc mole wt.= 144.4640 g 3 species in reaction 1.000 Cd++ 1.000 H2S -2.000 H+ -9.6758 -9.3301 -8.9883 -8.5828 -8.1817 -7.7843 -7.3902 -6.9991 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Greigite type= formula= Fe3S4 mole vol.= 0.0000 cc mole wt.= 295.7970 g 4 species in reaction 1.000 Fe++ 4.000 H2S 2.000 Fe+++ -8.000 H+ -15.6280 -16.5362 -17.2683 -17.9439 -18.4268 -18.7424 -18.9116 -18.9522 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Gummite type= formula= UO3 mole vol.= 0.0000 cc mole wt.= 286.0290 g 3 species in reaction 1.000 H2O 1.000 UO2++ -2.000 H+ 11.9470 11.1412 10.4030 9.5949 8.8608 8.1907 7.5769 7.0123 * used van't Hoff equation to compute logKs Gypsum type= formula= CaSO4:2H2O mole vol.= 0.0000 cc mole wt.= 172.1760 g 3 species in reaction 2.000 H2O 1.000 SO4-- 1.000 Ca++ -4.6166 -4.5876 -4.5809 -4.5976 -4.6367 -4.6940 -4.7665 -4.8515 * used analytic equation to compute logKs H-Autunite type= formula= H2(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 732.0216 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 2.000 H+ -47.6895 -47.8155 -47.9310 -48.0574 -48.1722 -48.2770 -48.3731 -48.4614 * used van't Hoff equation to compute logKs Halite type= formula= NaCl mole vol.= 0.0000 cc mole wt.= 58.4428 g 2 species in reaction 1.000 Cl- 1.000 Na+ 1.5204 1.5526 1.5820 1.6142 1.6435 1.6702 1.6947 1.7172 * used van't Hoff equation to compute logKs Halloysite type= formula= Al2Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 258.1636 g 4 species in reaction 2.000 Al+++ 1.000 H2O 2.000 H4SiO4 -6.000 H+ 15.1761 13.7784 12.4980 11.0964 9.8229 8.6608 7.5960 6.6168 * used van't Hoff equation to compute logKs Hausmannite type= formula= Mn3O4 mole vol.= 0.0000 cc mole wt.= 228.8140 g 4 species in reaction 3.000 H2O -6.000 H+ .500 O2(aq) 3.000 Mn++ 20.2203 19.0563 17.9900 16.8228 15.7622 14.7944 13.9077 13.0922 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Hematite type= formula= Fe2O3 mole vol.= 0.0000 cc mole wt.= 159.6940 g 3 species in reaction 3.000 H2O 2.000 Fe+++ -6.000 H+ -1.9387 -3.0186 -4.0080 -5.0910 -6.0749 -6.9729 -7.7956 -8.5522 * used van't Hoff equation to compute logKs Hinsdalite type= formula= PbAl3PO4SO4(OH)6 mole vol.= 0.0000 cc mole wt.= 581.2203 g 6 species in reaction 3.000 Al+++ 6.000 H2O 1.000 PO4--- -6.000 H+ 1.000 SO4-- 1.000 Pb++ -2.5000 -2.5000 -2.5000 -2.5000 -2.5000 -2.5000 -2.5000 -2.5000 * used van't Hoff equation to compute logKs Huntite type= formula= CaMg3(CO3)4 mole vol.= 0.0000 cc mole wt.= 353.0604 g 3 species in reaction 3.000 Mg++ 4.000 CO3-- 1.000 Ca++ -28.2399 -29.1417 -29.9680 -30.8724 -31.6942 -32.4441 -33.1312 -33.7631 * used van't Hoff equation to compute logKs Hxypyromorphite type= formula= Pb5(PO4)3OH mole vol.= 0.0000 cc mole wt.= 1337.8794 g 4 species in reaction 1.000 H2O 3.000 PO4--- -1.000 H+ 5.000 Pb++ -62.7900 -62.7900 -62.7900 -62.7900 -62.7900 -62.7900 -62.7900 -62.7900 * used van't Hoff equation to compute logKs Hydrocerrusite type= formula= Pb(OH)2:2PbCO3 mole vol.= 0.0000 cc mole wt.= 775.6082 g 4 species in reaction 2.000 H2O 2.000 CO3-- -2.000 H+ 3.000 Pb++ -17.4600 -17.4600 -17.4600 -17.4600 -17.4600 -17.4600 -17.4600 -17.4600 * used van't Hoff equation to compute logKs Hydromagnesite type= formula= Mg5(CO3)4(OH)2:4H2O mole vol.= 0.0000 cc mole wt.= 467.6844 g 4 species in reaction 6.000 H2O 5.000 Mg++ 4.000 CO3-- -2.000 H+ -5.2571 -7.0863 -8.7620 -10.5963 -12.2629 -13.7838 -15.1773 -16.4588 * used van't Hoff equation to compute logKs Hydroxyapatite type= formula= Ca5(PO4)3OH mole vol.= 0.0000 cc mole wt.= 502.3294 g 4 species in reaction 1.000 H2O 3.000 PO4--- -1.000 H+ 5.000 Ca++ -38.7439 -39.6390 -40.4590 -41.3566 -42.1721 -42.9164 -43.5983 -44.2253 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Illite type= formula= K0.6Mg0.25Al2.3Si3.5O10(OH)2 mole vol.= 0.0000 cc mole wt.= 383.9077 g 6 species in reaction 2.300 Al+++ -2.000 H2O 3.500 H4SiO4 .250 Mg++ .600 K+ -8.000 H+ 14.7797 13.2432 11.8628 10.3846 9.0740 7.9076 6.8662 5.9335 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Iodyrite type= formula= AgI mole vol.= 0.0000 cc mole wt.= 234.7724 g 2 species in reaction 1.000 I- 1.000 Ag+ -17.8693 -16.9303 -16.0700 -15.1283 -14.2728 -13.4920 -12.7766 -12.1188 * used van't Hoff equation to compute logKs Jarosite(ss) type= formula= (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 492.7168 g 6 species in reaction 6.000 H2O .770 K+ 3.000 Fe+++ .030 Na+ -5.800 H+ 2.000 SO4-- -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 -9.8300 * used van't Hoff equation to compute logKs Jarosite-K type= formula= KFe3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 500.8190 g 5 species in reaction 6.000 H2O 1.000 K+ 3.000 Fe+++ -6.000 H+ 2.000 SO4-- -7.1115 -8.2067 -9.2100 -10.3082 -11.3061 -12.2167 -13.0510 -13.8183 * used van't Hoff equation to compute logKs Jarosite-Na type= formula= NaFe3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 484.7068 g 5 species in reaction 6.000 H2O 3.000 Fe+++ 1.000 Na+ -6.000 H+ 2.000 SO4-- -2.8528 -4.1195 -5.2800 -6.5503 -7.7044 -8.7577 -9.7227 -10.6102 * used van't Hoff equation to compute logKs JarositeH type= formula= (H3O)Fe3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 480.7410 g 4 species in reaction 7.000 H2O 3.000 Fe+++ -5.000 H+ 2.000 SO4-- -1.6902 -3.6210 -5.3900 -7.3263 -9.0856 -10.6911 -12.1622 -13.5149 * used van't Hoff equation to compute logKs Jurbanite type= formula= AlOHSO4 mole vol.= 0.0000 cc mole wt.= 140.0535 g 4 species in reaction 1.000 Al+++ 1.000 H2O -1.000 H+ 1.000 SO4-- -3.2300 -3.2300 -3.2300 -3.2300 -3.2300 -3.2300 -3.2300 -3.2300 * used van't Hoff equation to compute logKs K-Autunite type= formula= K2(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 808.2096 g 3 species in reaction 2.000 PO4--- 2.000 K+ 2.000 UO2++ -48.6371 -48.4320 -48.2440 -48.0383 -47.8513 -47.6807 -47.5244 -47.3807 * used van't Hoff equation to compute logKs Kaolinite type= formula= Al2Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 258.1636 g 4 species in reaction 2.000 Al+++ 1.000 H2O 2.000 H4SiO4 -6.000 H+ 9.8031 8.5673 7.4350 6.1956 5.0695 4.0419 3.1003 2.2345 * used van't Hoff equation to compute logKs Kmica type= formula= KAl3Si3O10(OH)2 mole vol.= 0.0000 cc mole wt.= 398.3154 g 4 species in reaction 3.000 Al+++ 3.000 H4SiO4 1.000 K+ -10.000 H+ 16.6863 14.6075 12.7030 10.6183 8.7242 6.9957 5.4119 3.9555 * used van't Hoff equation to compute logKs Langite type= formula= Cu4(OH)6SO4:H2O mole vol.= 0.0000 cc mole wt.= 470.3120 g 4 species in reaction 7.000 H2O 4.000 Cu++ -6.000 H+ 1.000 SO4-- 19.4473 18.0605 16.7900 15.3993 14.1357 12.9826 11.9261 10.9545 * used van't Hoff equation to compute logKs Larnakite type= formula= PbO:PbSO4 mole vol.= 0.0000 cc mole wt.= 526.4440 g 4 species in reaction 1.000 H2O -2.000 H+ 1.000 SO4-- 2.000 Pb++ .1520 -.0734 -.2800 -.5061 -.7115 -.8990 -1.0708 -1.2288 * used van't Hoff equation to compute logKs Laumontite type= formula= CaAl2Si4O12:4H2O mole vol.= 0.0000 cc mole wt.= 470.4442 g 4 species in reaction 2.000 Al+++ 4.000 H4SiO4 -8.000 H+ 1.000 Ca++ 17.4394 15.8253 14.3703 12.8060 11.4130 10.1676 9.0502 8.0444 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Laurionite type= formula= PbOHCl mole vol.= 0.0000 cc mole wt.= 259.6510 g 4 species in reaction 1.000 H2O 1.000 Cl- -1.000 H+ 1.000 Pb++ .6230 .6230 .6230 .6230 .6230 .6230 .6230 .6230 * used van't Hoff equation to compute logKs Leonhardite type= formula= Ca2Al4Si8O24:7H2O mole vol.= 0.0000 cc mole wt.= 922.8724 g 5 species in reaction 4.000 Al+++ -1.000 H2O 8.000 H4SiO4 -16.000 H+ 2.000 Ca++ 26.3150 23.4667 20.9046 18.1570 15.7171 13.5422 11.5968 9.8512 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Litharge type= formula= PbO mole vol.= 0.0000 cc mole wt.= 223.1900 g 3 species in reaction 1.000 H2O -2.000 H+ 1.000 Pb++ 13.8189 13.2454 12.7200 12.1449 11.6224 11.1455 10.7086 10.3068 * used van't Hoff equation to compute logKs Mackinawite type= formula= FeS mole vol.= 0.0000 cc mole wt.= 87.9110 g 3 species in reaction 1.000 Fe++ 1.000 H2S -2.000 H+ 2.7038 2.4767 2.2937 2.1248 2.0040 1.9251 1.8828 1.8727 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Magadiite type= formula= NaSi7O13(OH)3:3H2O mole vol.= 0.0000 cc mole wt.= 532.6519 g 4 species in reaction -9.000 H2O 7.000 H4SiO4 1.000 Na+ -1.000 H+ -14.3000 -14.3000 -14.3000 -14.3000 -14.3000 -14.3000 -14.3000 -14.3000 * used van't Hoff equation to compute logKs Maghemite type= formula= Fe2O3 mole vol.= 0.0000 cc mole wt.= 159.6940 g 3 species in reaction 3.000 H2O 2.000 Fe+++ -6.000 H+ 6.3860 6.3860 6.3860 6.3860 6.3860 6.3860 6.3860 6.3860 * used van't Hoff equation to compute logKs Magnesite type= formula= MgCO3 mole vol.= 0.0000 cc mole wt.= 84.3231 g 2 species in reaction 1.000 Mg++ 1.000 CO3-- -7.6151 -7.8311 -8.0290 -8.2456 -8.4424 -8.6220 -8.7865 -8.9378 * used van't Hoff equation to compute logKs Magnetite type= formula= Fe3O4 mole vol.= 0.0000 cc mole wt.= 231.5410 g 4 species in reaction 1.000 Fe++ 4.000 H2O 2.000 Fe+++ -8.000 H+ 7.1222 5.3555 3.7370 1.9653 .3556 -1.1133 -2.4592 -3.6970 * used van't Hoff equation to compute logKs Malachite type= formula= Cu2(OH)2CO3 mole vol.= 0.0000 cc mole wt.= 221.1191 g 4 species in reaction 2.000 H2O 1.000 CO3-- 2.000 Cu++ -2.000 H+ -4.1529 -4.6735 -5.1789 -5.7655 -6.3313 -6.8774 -7.4053 -7.9164 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Manganite type= formula= MnOOH mole vol.= 0.0000 cc mole wt.= 87.9460 g 4 species in reaction 1.500 H2O -2.000 H+ .250 O2(aq) 1.000 Mn++ 1.5594 2.7391 3.8200 5.0031 6.0781 7.0591 7.9579 8.7844 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Massicot type= formula= PbO mole vol.= 0.0000 cc mole wt.= 223.1900 g 3 species in reaction 1.000 H2O -2.000 H+ 1.000 Pb++ 14.0357 13.4482 12.9100 12.3209 11.7856 11.2971 10.8495 10.4379 * used van't Hoff equation to compute logKs Matlockite type= formula= PbClF mole vol.= 0.0000 cc mole wt.= 261.6414 g 3 species in reaction 1.000 F- 1.000 Cl- 1.000 Pb++ -9.9633 -9.6850 -9.4300 -9.1509 -8.8973 -8.6658 -8.4538 -8.2588 * used van't Hoff equation to compute logKs Melanothallite type= formula= CuCl2 mole vol.= 0.0000 cc mole wt.= 134.4520 g 2 species in reaction 2.000 Cl- 1.000 Cu++ 4.5565 4.1252 3.7300 3.2974 2.9044 2.5458 2.2172 1.9150 * used van't Hoff equation to compute logKs Melanterite type= formula= FeSO4:7H2O mole vol.= 0.0000 cc mole wt.= 278.0230 g 3 species in reaction 1.000 Fe++ 7.000 H2O 1.000 SO4-- -2.5683 -2.3736 -2.2093 -2.0455 -1.9119 -1.8035 -1.7161 -1.6464 * used analytic equation to compute logKs Millerite type= formula= NiS mole vol.= 0.0000 cc mole wt.= 90.7740 g 3 species in reaction 1.000 Ni++ 1.000 H2S -2.000 H+ -.8580 -.9975 -1.1003 -1.1814 -1.2224 -1.2285 -1.2042 -1.1530 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Minium type= formula= Pb3O4 mole vol.= 0.0000 cc mole wt.= 685.5700 g 4 species in reaction 3.000 H2O -6.000 H+ .500 O2(aq) 3.000 Pb++ 33.0225 31.7843 30.6500 29.4083 28.2802 27.2506 26.3074 25.4399 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Mirabilite type= formula= Na2SO4:10H2O mole vol.= 0.0000 cc mole wt.= 322.2036 g 3 species in reaction 10.000 H2O 2.000 Na+ 1.000 SO4-- -2.3878 -1.7230 -1.1140 -.4474 .1583 .7111 1.2175 1.6832 * used van't Hoff equation to compute logKs Mn2(SO4)3 type= formula= Mn2(SO4)3 mole vol.= 0.0000 cc mole wt.= 398.0680 g 2 species in reaction 2.000 Mn+++ 3.000 SO4-- -3.0906 -4.4581 -5.7110 -7.0824 -8.3284 -9.4655 -10.5074 -11.4655 * used van't Hoff equation to compute logKs Mn3(AsO4):8H2O type= formula= Mn3(AsO4)2:8H2O mole vol.= 0.0000 cc mole wt.= 586.7852 g 4 species in reaction 8.000 H2O 2.000 H3AsO4 -6.000 H+ 3.000 Mn++ 13.9733 13.7331 13.5130 13.2721 13.0532 12.8535 12.6705 12.5022 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Mn3(PO4)2 type= formula= Mn3(PO4)2 mole vol.= 0.0000 cc mole wt.= 354.7616 g 2 species in reaction 2.000 PO4--- 3.000 Mn++ -23.9692 -23.8950 -23.8270 -23.7526 -23.6849 -23.6232 -23.5667 -23.5147 * used van't Hoff equation to compute logKs MnCl2:4H2O type= formula= MnCl2:4H2O mole vol.= 0.0000 cc mole wt.= 197.9080 g 3 species in reaction 4.000 H2O 2.000 Cl- 1.000 Mn++ 1.5440 2.1525 2.7100 3.3202 3.8746 4.3806 4.8442 5.2705 * used van't Hoff equation to compute logKs MnHPO4 type= formula= MnHPO4 mole vol.= 0.0000 cc mole wt.= 150.9198 g 3 species in reaction 1.000 PO4--- 1.000 H+ 1.000 Mn++ -25.5298 -25.4062 -25.2930 -25.1691 -25.0565 -24.9537 -24.8595 -24.7729 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MnS(Green) type= formula= MnS mole vol.= 0.0000 cc mole wt.= 87.0020 g 3 species in reaction 1.000 H2S -2.000 H+ 1.000 Mn++ 11.5402 11.1104 10.7417 10.3695 10.0640 9.8166 9.6199 9.4677 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components MnSO4 type= formula= MnSO4 mole vol.= 0.0000 cc mole wt.= 151.0020 g 2 species in reaction 1.000 SO4-- 1.000 Mn++ 3.7075 3.1655 2.6690 2.1255 1.6317 1.1810 .7681 .3884 * used van't Hoff equation to compute logKs Monteponite type= formula= CdO mole vol.= 0.0000 cc mole wt.= 128.4000 g 3 species in reaction 1.000 Cd++ 1.000 H2O -2.000 H+ 15.4311 14.5642 13.7700 12.9007 12.1108 11.3900 10.7296 10.1223 * used van't Hoff equation to compute logKs Montmorillonite-Aberdeen type= formula= (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 mole vol.= 0.0000 cc mole wt.= 379.1647 g 8 species in reaction 1.470 Al+++ -3.280 H2O .450 Mg++ .140 K+ 3.820 H4SiO4 .330 Fe+++ .140 Na+ -6.580 H+ 7.8387 5.6330 3.6298 1.4579 -.4947 -2.2576 -3.8555 -5.3089 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Montmorillonite-BelleFourche type= formula= (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 mole vol.= 0.0000 cc mole wt.= 372.8810 g 8 species in reaction 1.570 Al+++ -3.720 H2O .290 Mg++ .090 K+ 3.930 H4SiO4 .240 Fe+++ .090 Na+ -6.190 H+ 5.1665 2.8108 .6713 -1.6484 -3.7338 -5.6166 -7.3231 -8.8754 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Montmorillonite-Ca type= formula= Ca0.165Al2.33Si3.67O10(OH)2 mole vol.= 0.0000 cc mole wt.= 366.5655 g 5 species in reaction 2.330 Al+++ -2.680 H2O .165 Ca++ 3.670 H4SiO4 -7.320 H+ 10.5380 9.0857 7.7828 6.3897 5.1570 4.0620 3.0864 2.2145 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Morenosite type= formula= NiSO4:7H2O mole vol.= 0.0000 cc mole wt.= 280.8860 g 3 species in reaction 7.000 H2O 1.000 SO4-- 1.000 Ni++ -2.5572 -2.4543 -2.3600 -2.2568 -2.1630 -2.0774 -1.9990 -1.9269 * used van't Hoff equation to compute logKs Na-Autunite type= formula= Na2(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 775.9852 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 2.000 Na+ -47.3781 -47.3942 -47.4090 -47.4252 -47.4398 -47.4532 -47.4655 -47.4768 * used van't Hoff equation to compute logKs Na4UO2(CO3)3 type= formula= Na4UO2(CO3)3 mole vol.= 0.0000 cc mole wt.= 542.0215 g 3 species in reaction 3.000 CO3-- 1.000 UO2++ 4.000 Na+ -16.2900 -16.2900 -16.2900 -16.2900 -16.2900 -16.2900 -16.2900 -16.2900 * used van't Hoff equation to compute logKs Nahcolite type= formula= NaHCO3 mole vol.= 0.0000 cc mole wt.= 84.0089 g 3 species in reaction 1.000 CO3-- 1.000 Na+ 1.000 H+ -11.4261 -11.1246 -10.8769 -10.6391 -10.4559 -10.3185 -10.2201 -10.1552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Nantokite type= formula= CuCl mole vol.= 0.0000 cc mole wt.= 98.9990 g 2 species in reaction 1.000 Cl- 1.000 Cu+ -7.4295 -7.0801 -6.7600 -6.4096 -6.0912 -5.8007 -5.5345 -5.2897 * used van't Hoff equation to compute logKs Natron type= formula= Na2CO3:10H2O mole vol.= 0.0000 cc mole wt.= 286.1507 g 3 species in reaction 10.000 H2O 1.000 CO3-- 2.000 Na+ -2.3673 -1.8160 -1.3110 -.7582 -.2559 .2024 .6224 1.0086 * used van't Hoff equation to compute logKs Nesquehonite type= formula= MgCO3:3H2O mole vol.= 0.0000 cc mole wt.= 138.3711 g 3 species in reaction 3.000 H2O 1.000 Mg++ 1.000 CO3-- -5.2326 -5.4353 -5.6210 -5.8243 -6.0089 -6.1775 -6.3319 -6.4739 * used van't Hoff equation to compute logKs Ni(OH)2 type= formula= Ni(OH)2 mole vol.= 0.0000 cc mole wt.= 92.7260 g 3 species in reaction 2.000 H2O 1.000 Ni++ -2.000 H+ 8.7572 9.8233 10.8000 11.8691 12.8405 13.7269 14.5391 15.2860 * used van't Hoff equation to compute logKs Ni2SiO4 type= formula= Ni2SiO4 mole vol.= 0.0000 cc mole wt.= 209.5043 g 3 species in reaction 1.000 H4SiO4 2.000 Ni++ -4.000 H+ 16.7780 15.6100 14.5400 13.3687 12.3045 11.3334 10.4436 9.6253 * used van't Hoff equation to compute logKs Ni3(AsO4)2:8H2O type= formula= Ni3(AsO4)2:8H2O mole vol.= 0.0000 cc mole wt.= 598.1012 g 4 species in reaction 8.000 H2O 2.000 H3AsO4 3.000 Ni++ -6.000 H+ 17.1693 16.9291 16.7090 16.4681 16.2492 16.0495 15.8665 15.6982 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Ni3(PO4)2 type= formula= Ni3(PO4)2 mole vol.= 0.0000 cc mole wt.= 366.0776 g 2 species in reaction 2.000 PO4--- 3.000 Ni++ -31.3000 -31.3000 -31.3000 -31.3000 -31.3000 -31.3000 -31.3000 -31.3000 * used van't Hoff equation to compute logKs Ni4(OH)6SO4 type= formula= Ni4(OH)6SO4 mole vol.= 0.0000 cc mole wt.= 432.9520 g 4 species in reaction 6.000 H2O 1.000 SO4-- 4.000 Ni++ -6.000 H+ 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 32.0000 * used van't Hoff equation to compute logKs NiCO3 type= formula= NiCO3 mole vol.= 0.0000 cc mole wt.= 118.7211 g 2 species in reaction 1.000 CO3-- 1.000 Ni++ -6.1732 -6.5212 -6.8400 -7.1890 -7.5061 -7.7955 -8.0606 -8.3044 * used van't Hoff equation to compute logKs Ningyoite type= formula= CaU(PO4)2:2H2O mole vol.= 0.0000 cc mole wt.= 504.0886 g 4 species in reaction 2.000 H2O 2.000 PO4--- 1.000 Ca++ 1.000 U++++ -53.7537 -53.8332 -53.9060 -53.9857 -54.0581 -54.1242 -54.1847 -54.2404 * used van't Hoff equation to compute logKs Nsutite type= formula= MnO2 mole vol.= 0.0000 cc mole wt.= 86.9380 g 4 species in reaction 1.000 H2O 1.000 Mn++ -2.000 H+ .500 O2(aq) -4.9973 -2.6377 -.4760 1.8903 4.0402 6.0021 7.7998 9.4529 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Orpiment type= formula= As2S3 mole vol.= 0.0000 cc mole wt.= 246.0352 g 4 species in reaction -8.000 H2O 2.000 H2 3.000 H2S 2.000 H3AsO4 -77.2306 -73.7441 -70.4750 -66.8022 -63.3670 -60.1382 -57.0900 -54.2006 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Otavite type= formula= CdCO3 mole vol.= 0.0000 cc mole wt.= 172.4111 g 2 species in reaction 1.000 Cd++ 1.000 CO3-- -12.0987 -12.0994 -12.1000 -12.1007 -12.1013 -12.1018 -12.1023 -12.1028 * used van't Hoff equation to compute logKs Pb(BO2)2 type= formula= Pb(BO2)2 mole vol.= 0.0000 cc mole wt.= 292.8100 g 4 species in reaction -2.000 H2O 2.000 H3BO3 -2.000 H+ 1.000 Pb++ 7.9991 7.7960 7.6100 7.4064 7.2213 7.0525 6.8978 6.7555 * used van't Hoff equation to compute logKs Pb(OH)2 type= formula= Pb(OH)2 mole vol.= 0.0000 cc mole wt.= 241.2060 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 Pb++ 9.0885 8.5987 8.1500 7.6588 7.2125 6.8053 6.4321 6.0889 * used van't Hoff equation to compute logKs Pb2(OH)3Cl type= formula= Pb2(OH)3Cl mole vol.= 0.0000 cc mole wt.= 500.8570 g 4 species in reaction 3.000 H2O 1.000 Cl- -3.000 H+ 2.000 Pb++ 8.7930 8.7930 8.7930 8.7930 8.7930 8.7930 8.7930 8.7930 * used van't Hoff equation to compute logKs Pb2O(OH)2 type= formula= PbO:Pb(OH)2 mole vol.= 0.0000 cc mole wt.= 464.3960 g 3 species in reaction 3.000 H2O -4.000 H+ 2.000 Pb++ 26.2000 26.2000 26.2000 26.2000 26.2000 26.2000 26.2000 26.2000 * used van't Hoff equation to compute logKs Pb2O3 type= formula= Pb2O3 mole vol.= 0.0000 cc mole wt.= 462.3800 g 4 species in reaction 2.000 H2O -4.000 H+ .500 O2(aq) 2.000 Pb++ 13.4787 15.8383 18.0000 20.3663 22.5162 24.4781 26.2758 27.9289 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Pb2OCO3 type= formula= PbO:PbCO3 mole vol.= 0.0000 cc mole wt.= 490.3911 g 4 species in reaction 1.000 H2O 1.000 CO3-- -2.000 H+ 2.000 Pb++ .2688 -.1324 -.5000 -.9024 -1.2679 -1.6016 -1.9072 -2.1883 * used van't Hoff equation to compute logKs Pb2SiO4 type= formula= Pb2SiO4 mole vol.= 0.0000 cc mole wt.= 506.4643 g 3 species in reaction 1.000 H4SiO4 -4.000 H+ 2.000 Pb++ 21.5042 20.5940 19.7600 18.8471 18.0177 17.2608 16.5673 15.9296 * used van't Hoff equation to compute logKs Pb3(AsO4)2 type= formula= Pb3(AsO4)2 mole vol.= 0.0000 cc mole wt.= 899.4132 g 3 species in reaction 2.000 H3AsO4 -6.000 H+ 3.000 Pb++ 7.2773 7.0371 6.8170 6.5761 6.3572 6.1575 5.9745 5.8062 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Pb3(PO4)2 type= formula= Pb3(PO4)2 mole vol.= 0.0000 cc mole wt.= 811.5176 g 2 species in reaction 2.000 PO4--- 3.000 Pb++ -44.7236 -44.5349 -44.3620 -44.1728 -44.0008 -43.8439 -43.7001 -43.5679 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Pb3O2CO3 type= formula= PbCO3:2PbO mole vol.= 0.0000 cc mole wt.= 713.5811 g 4 species in reaction 2.000 H2O 1.000 CO3-- -4.000 H+ 3.000 Pb++ 12.7931 11.8677 11.0200 10.0920 9.2489 8.4795 7.7745 7.1262 * used van't Hoff equation to compute logKs Pb3O2SO4 type= formula= PbSO4:2PbO mole vol.= 0.0000 cc mole wt.= 749.6340 g 4 species in reaction 2.000 H2O 1.000 SO4-- -4.000 H+ 3.000 Pb++ 11.7920 11.0656 10.4000 9.6715 9.0095 8.4055 7.8520 7.3430 * used van't Hoff equation to compute logKs Pb4(OH)6SO4 type= formula= Pb4(OH)6SO4 mole vol.= 0.0000 cc mole wt.= 1026.8720 g 4 species in reaction 6.000 H2O 1.000 SO4-- -6.000 H+ 4.000 Pb++ 21.1000 21.1000 21.1000 21.1000 21.1000 21.1000 21.1000 21.1000 * used van't Hoff equation to compute logKs Pb4O3SO4 type= formula= PbSO4:3PbO mole vol.= 0.0000 cc mole wt.= 972.8240 g 4 species in reaction 3.000 H2O 1.000 SO4-- -6.000 H+ 4.000 Pb++ 24.4527 23.2249 22.1000 20.8687 19.7499 18.7290 17.7936 16.9334 * used van't Hoff equation to compute logKs PbBr2 type= formula= PbBr2 mole vol.= 0.0000 cc mole wt.= 366.9980 g 2 species in reaction 2.000 Br- 1.000 Pb++ -5.7234 -5.4398 -5.1800 -4.8956 -4.6372 -4.4014 -4.1854 -3.9867 * used van't Hoff equation to compute logKs PbBrF type= formula= PbBrF mole vol.= 0.0000 cc mole wt.= 306.0924 g 3 species in reaction 1.000 F- 1.000 Br- 1.000 Pb++ -8.4900 -8.4900 -8.4900 -8.4900 -8.4900 -8.4900 -8.4900 -8.4900 * used van't Hoff equation to compute logKs PbF2 type= formula= PbF2 mole vol.= 0.0000 cc mole wt.= 245.1868 g 2 species in reaction 2.000 F- 1.000 Pb++ -7.3930 -7.4175 -7.4400 -7.4646 -7.4869 -7.5073 -7.5260 -7.5431 * used van't Hoff equation to compute logKs PbHPO4 type= formula= PbHPO4 mole vol.= 0.0000 cc mole wt.= 303.1718 g 3 species in reaction 1.000 PO4--- 1.000 H+ 1.000 Pb++ -24.5151 -24.1450 -23.8060 -23.4349 -23.0977 -22.7900 -22.5081 -22.2488 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components PbI2 type= formula= PbI2 mole vol.= 0.0000 cc mole wt.= 460.9988 g 2 species in reaction 2.000 I- 1.000 Pb++ -9.0870 -8.5563 -8.0700 -7.5377 -7.0541 -6.6128 -6.2084 -5.8366 * used van't Hoff equation to compute logKs PbMetal type= formula= Pb mole vol.= 0.0000 cc mole wt.= 207.1900 g 4 species in reaction 1.000 H2O -2.000 H+ -.500 O2(aq) 1.000 Pb++ 51.8044 49.4589 47.3100 44.9578 42.8206 40.8703 39.0833 37.4400 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components PbO:0.3H2O type= formula= PbO:0.33H2O mole vol.= 0.0000 cc mole wt.= 229.1353 g 3 species in reaction 1.330 H2O -2.000 H+ 1.000 Pb++ 12.9800 12.9800 12.9800 12.9800 12.9800 12.9800 12.9800 12.9800 * used van't Hoff equation to compute logKs PbSiO3 type= formula= PbSiO3 mole vol.= 0.0000 cc mole wt.= 283.2743 g 4 species in reaction -1.000 H2O 1.000 H4SiO4 -2.000 H+ 1.000 Pb++ 7.9412 7.6170 7.3200 6.9949 6.6995 6.4299 6.1829 5.9558 * used van't Hoff equation to compute logKs Phillipsite type= formula= Na0.5K0.5AlSi3O8:H2O mole vol.= 0.0000 cc mole wt.= 288.2963 g 6 species in reaction 1.000 Al+++ -3.000 H2O .500 K+ 3.000 H4SiO4 .500 Na+ -4.000 H+ 5.6544 4.1539 2.7911 1.3137 -.0146 -1.2139 -2.3008 -3.2896 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Phlogopite type= formula= KMg3AlSi3O10(OH)2 mole vol.= 0.0000 cc mole wt.= 417.2884 g 5 species in reaction 1.000 Al+++ 3.000 Mg++ 1.000 K+ 3.000 H4SiO4 -10.000 H+ 46.1377 44.6568 43.3000 41.8148 40.4655 39.2340 38.1058 37.0682 * used van't Hoff equation to compute logKs Phosgenite type= formula= PbCl2:PbCO3 mole vol.= 0.0000 cc mole wt.= 545.2971 g 3 species in reaction 1.000 CO3-- 2.000 Cl- 2.000 Pb++ -19.8100 -19.8100 -19.8100 -19.8100 -19.8100 -19.8100 -19.8100 -19.8100 * used van't Hoff equation to compute logKs Plattnerite type= formula= PbO2 mole vol.= 0.0000 cc mole wt.= 239.1900 g 4 species in reaction 1.000 H2O -2.000 H+ .500 O2(aq) 1.000 Pb++ 6.4837 6.3670 6.2600 6.1429 6.0365 5.9394 5.8505 5.7687 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Plumbogummite type= formula= PbAl3(PO4)2(OH)5:H2O mole vol.= 0.0000 cc mole wt.= 581.1381 g 5 species in reaction 3.000 Al+++ 6.000 H2O 2.000 PO4--- -5.000 H+ 1.000 Pb++ -32.7900 -32.7900 -32.7900 -32.7900 -32.7900 -32.7900 -32.7900 -32.7900 * used van't Hoff equation to compute logKs Portlandite type= formula= Ca(OH)2 mole vol.= 0.0000 cc mole wt.= 74.0960 g 3 species in reaction 2.000 H2O 1.000 Ca++ -2.000 H+ 24.8797 23.7943 22.8000 21.7116 20.7227 19.8202 18.9934 18.2330 * used van't Hoff equation to compute logKs Prehnite type= formula= Ca2Al2Si3O10(OH)2 mole vol.= 0.0000 cc mole wt.= 412.3919 g 4 species in reaction 2.000 Al+++ 2.000 Ca++ 3.000 H4SiO4 -10.000 H+ 38.6647 36.0276 33.6353 31.0451 28.7200 26.6240 24.7271 23.0046 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Przhevalskite type= formula= Pb(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 937.1956 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 1.000 Pb++ -43.6271 -44.0122 -44.3650 -44.7512 -45.1021 -45.4223 -45.7157 -45.9856 * used van't Hoff equation to compute logKs Pyrite type= formula= FeS2 mole vol.= 0.0000 cc mole wt.= 119.9750 g 5 species in reaction 1.000 Fe++ -1.000 H2O 2.000 H2S -2.000 H+ .500 O2(aq) -52.0948 -49.7938 -47.6356 -45.2104 -42.9415 -40.8084 -38.7940 -36.8839 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Pyrochroite type= formula= Mn(OH)2 mole vol.= 0.0000 cc mole wt.= 88.9540 g 3 species in reaction 2.000 H2O 1.000 Mn++ -2.000 H+ 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 * used van't Hoff equation to compute logKs Pyrolusite type= formula= MnO2 mole vol.= 0.0000 cc mole wt.= 86.9380 g 4 species in reaction 1.000 H2O 1.000 Mn++ -2.000 H+ .500 O2(aq) -1.8133 -1.7333 -1.6600 -1.5798 -1.5069 -1.4404 -1.3794 -1.3234 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Pyrophyllite type= formula= Al2Si4O10(OH)2 mole vol.= 0.0000 cc mole wt.= 360.3162 g 4 species in reaction 2.000 Al+++ -4.000 H2O 4.000 H4SiO4 -6.000 H+ 2.7427 -.2582 -2.9837 -5.9387 -8.5952 -10.9937 -13.1677 -15.1451 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Quartz type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -4.3822 -4.1725 -3.9804 -3.7701 -3.5790 -3.4047 -3.2449 -3.0980 * used analytic equation to compute logKs Realgar type= formula= AsS mole vol.= 0.0000 cc mole wt.= 106.9856 g 5 species in reaction -3.500 H2O 1.000 H2 1.000 H2S 1.000 H3AsO4 -.250 O2(aq) -15.2679 -14.6100 -13.9823 -13.2638 -12.5782 -11.9213 -11.2895 -10.6796 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Retgersite type= formula= NiSO4:6H2O mole vol.= 0.0000 cc mole wt.= 262.8700 g 3 species in reaction 6.000 H2O 1.000 SO4-- 1.000 Ni++ -2.1138 -2.0753 -2.0400 -2.0014 -1.9663 -1.9343 -1.9049 -1.8779 * used van't Hoff equation to compute logKs Rhodochrosite type= formula= MnCO3 mole vol.= 0.0000 cc mole wt.= 114.9491 g 2 species in reaction 1.000 CO3-- 1.000 Mn++ -11.0341 -11.0841 -11.1300 -11.1802 -11.2258 -11.2675 -11.3056 -11.3407 * used van't Hoff equation to compute logKs Rhodochrosite(d) type= formula= MnCO3 mole vol.= 0.0000 cc mole wt.= 114.9491 g 2 species in reaction 1.000 CO3-- 1.000 Mn++ -10.3900 -10.3900 -10.3900 -10.3900 -10.3900 -10.3900 -10.3900 -10.3900 * used van't Hoff equation to compute logKs Rutherfordine type= formula= UO2CO3 mole vol.= 0.0000 cc mole wt.= 330.0401 g 2 species in reaction 1.000 CO3-- 1.000 UO2++ -14.3534 -14.4038 -14.4500 -14.5006 -14.5465 -14.5884 -14.6268 -14.6621 * used van't Hoff equation to compute logKs Saleeite type= formula= Mg(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 754.3176 g 3 species in reaction 1.000 Mg++ 2.000 PO4--- 2.000 UO2++ -42.2922 -42.9987 -43.6460 -44.3545 -44.9983 -45.5857 -46.1240 -46.6190 * used van't Hoff equation to compute logKs Schoepite type= formula= UO2(OH)2:H2O mole vol.= 0.0000 cc mole wt.= 322.0610 g 3 species in reaction 3.000 H2O 1.000 UO2++ -2.000 H+ 6.2121 5.7903 5.4040 4.9811 4.5969 4.2462 3.9249 3.6295 * used van't Hoff equation to compute logKs Scorodite type= formula= FeAsO4:2H2O mole vol.= 0.0000 cc mole wt.= 230.8006 g 4 species in reaction 2.000 H2O 1.000 H3AsO4 1.000 Fe+++ -3.000 H+ 1.0912 .9710 .8610 .7405 .6311 .5312 .4397 .3556 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Se(s) type= formula= Se mole vol.= 0.0000 cc mole wt.= 78.9600 g 4 species in reaction -1.000 H2O 1.000 HSe- 1.000 H+ .500 O2(aq) -64.8833 -62.5237 -60.3620 -57.9957 -55.8458 -53.8839 -52.0862 -50.4331 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components SeO2 type= formula= SeO2 mole vol.= 0.0000 cc mole wt.= 110.9600 g 3 species in reaction -1.000 H2O 1.000 SeO3-- 2.000 H+ -8.3800 -8.3800 -8.3800 -8.3800 -8.3800 -8.3800 -8.3800 -8.3800 * used van't Hoff equation to compute logKs Sepiolite type= formula= Mg2Si3O7.5OH:3H2O mole vol.= 0.0000 cc mole wt.= 323.9329 g 4 species in reaction -.500 H2O 2.000 Mg++ 3.000 H4SiO4 -4.000 H+ 16.4778 16.1032 15.7600 15.3843 15.0430 14.7315 14.4461 14.1836 * used van't Hoff equation to compute logKs Sepiolite(d) type= formula= Mg2Si3O7.5OH:3H2O mole vol.= 0.0000 cc mole wt.= 323.9329 g 4 species in reaction -.500 H2O 2.000 Mg++ 3.000 H4SiO4 -4.000 H+ 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 * used van't Hoff equation to compute logKs Siderite type= formula= FeCO3 mole vol.= 0.0000 cc mole wt.= 115.8581 g 2 species in reaction 1.000 Fe++ 1.000 CO3-- -10.7236 -10.8105 -10.8900 -10.9771 -11.0562 -11.1284 -11.1945 -11.2554 * used van't Hoff equation to compute logKs Siderite(d)(3) type= formula= FeCO3 mole vol.= 0.0000 cc mole wt.= 115.8581 g 2 species in reaction 1.000 Fe++ 1.000 CO3-- -10.4500 -10.4500 -10.4500 -10.4500 -10.4500 -10.4500 -10.4500 -10.4500 * used van't Hoff equation to compute logKs Silicagel type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -3.3159 -3.1604 -3.0180 -2.8621 -2.7205 -2.5912 -2.4728 -2.3639 * used van't Hoff equation to compute logKs SiO2(a) type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -2.9362 -2.8191 -2.7118 -2.5943 -2.4876 -2.3903 -2.3010 -2.2190 * used analytic equation to compute logKs Smithsonite type= formula= ZnCO3 mole vol.= 0.0000 cc mole wt.= 125.3811 g 2 species in reaction 1.000 CO3-- 1.000 Zn++ -9.7075 -9.8602 -10.0000 -10.1531 -10.2922 -10.4191 -10.5354 -10.6423 * used van't Hoff equation to compute logKs Sphalerite type= formula= ZnS mole vol.= 0.0000 cc mole wt.= 97.4340 g 3 species in reaction 1.000 H2S 1.000 Zn++ -2.000 H+ -4.8197 -4.7579 -4.6763 -4.5556 -4.4131 -4.2518 -4.0741 -3.8819 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Sr-Autunite type= formula= Sr(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 817.6256 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 1.000 Sr++ -43.5815 -44.0384 -44.4570 -44.9152 -45.3315 -45.7114 -46.0595 -46.3796 * used van't Hoff equation to compute logKs SrF2 type= formula= SrF2 mole vol.= 0.0000 cc mole wt.= 125.6168 g 2 species in reaction 1.000 Sr++ 2.000 F- -8.6239 -8.5801 -8.5400 -8.4961 -8.4562 -8.4198 -8.3865 -8.3558 * used van't Hoff equation to compute logKs Strengite type= formula= FePO4:2H2O mole vol.= 0.0000 cc mole wt.= 186.8528 g 3 species in reaction 2.000 H2O 1.000 PO4--- 1.000 Fe+++ -26.2638 -26.3349 -26.4000 -26.4713 -26.5360 -26.5951 -26.6493 -26.6991 * used van't Hoff equation to compute logKs Strontianite type= formula= SrCO3 mole vol.= 0.0000 cc mole wt.= 147.6311 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ -9.3407 -9.2806 -9.2705 -9.3137 -9.4068 -9.5408 -9.7087 -9.9044 * used analytic equation to compute logKs Sulfur type= formula= S mole vol.= 0.0000 cc mole wt.= 32.0640 g 3 species in reaction -1.000 H2O 1.000 H2S .500 O2(aq) -42.0358 -40.0503 -38.2063 -36.1564 -34.2612 -32.5004 -30.8571 -29.3172 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Talc type= formula= Mg3Si4O10(OH)2 mole vol.= 0.0000 cc mole wt.= 379.2892 g 4 species in reaction -4.000 H2O 3.000 Mg++ 4.000 H4SiO4 -6.000 H+ 24.5086 22.8858 21.3990 19.7716 18.2929 16.9435 15.7072 14.5703 * used van't Hoff equation to compute logKs Tenorite type= formula= CuO mole vol.= 0.0000 cc mole wt.= 79.5460 g 3 species in reaction 1.000 H2O 1.000 Cu++ -2.000 H+ 8.6424 8.1088 7.6200 7.0849 6.5988 6.1551 5.7486 5.3748 * used van't Hoff equation to compute logKs Thenardite type= formula= Na2SO4 mole vol.= 0.0000 cc mole wt.= 142.0436 g 2 species in reaction 1.000 SO4-- 2.000 Na+ -.1406 -.1607 -.1790 -.1991 -.2173 -.2340 -.2492 -.2633 * used van't Hoff equation to compute logKs Thermonatrite type= formula= Na2CO3:H2O mole vol.= 0.0000 cc mole wt.= 124.0067 g 3 species in reaction 1.000 H2O 1.000 CO3-- 2.000 Na+ .3130 .2149 .1250 .0266 -.0628 -.1443 -.2191 -.2878 * used van't Hoff equation to compute logKs Torbernite type= formula= Cu(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 793.5516 g 3 species in reaction 2.000 PO4--- 1.000 Cu++ 2.000 UO2++ -44.2123 -44.7690 -45.2790 -45.8373 -46.3445 -46.8073 -47.2314 -47.6214 * used van't Hoff equation to compute logKs Tremolite type= formula= Ca2Mg5Si8O22(OH)2 mole vol.= 0.0000 cc mole wt.= 812.4104 g 5 species in reaction -8.000 H2O 5.000 Mg++ 2.000 Ca++ 8.000 H4SiO4 -14.000 H+ 63.0715 59.6806 56.5740 53.1735 50.0838 47.2643 44.6809 42.3053 * used van't Hoff equation to compute logKs Trona type= formula= NaHCO3:Na2CO3:2H2O mole vol.= 0.0000 cc mole wt.= 226.0316 g 4 species in reaction 2.000 H2O 2.000 CO3-- 3.000 Na+ 1.000 H+ -10.2160 -10.6749 -11.1239 -11.6487 -12.1583 -12.6533 -13.1342 -13.6021 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Tsumebite type= formula= Pb2CuPO4(OH)3:3H2O mole vol.= 0.0000 cc mole wt.= 677.9718 g 5 species in reaction 6.000 H2O 1.000 PO4--- 1.000 Cu++ -3.000 H+ 2.000 Pb++ -9.7900 -9.7900 -9.7900 -9.7900 -9.7900 -9.7900 -9.7900 -9.7900 * used van't Hoff equation to compute logKs U(HPO4)2:4H2O type= formula= U(HPO4)2:4H2O mole vol.= 0.0000 cc mole wt.= 502.0566 g 4 species in reaction 4.000 H2O 2.000 PO4--- 2.000 H+ 1.000 U++++ -55.5576 -55.4232 -55.3000 -55.1652 -55.0427 -54.9309 -54.8285 -54.7343 * used van't Hoff equation to compute logKs U(OH)2SO4 type= formula= U(OH)2SO4 mole vol.= 0.0000 cc mole wt.= 368.1090 g 4 species in reaction 2.000 H2O 1.000 SO4-- -2.000 H+ 1.000 U++++ -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 -3.2000 * used van't Hoff equation to compute logKs U3O8(c) type= formula= U3O8 mole vol.= 0.0000 cc mole wt.= 842.0870 g 4 species in reaction 6.000 H2O -12.000 H+ 1.000 O2(aq) 3.000 U++++ -66.8106 -66.1527 -65.5500 -64.8903 -64.2909 -63.7439 -63.2427 -62.7818 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components U4O9(c) type= formula= U4O9 mole vol.= 0.0000 cc mole wt.= 1096.1160 g 4 species in reaction 8.000 H2O -16.000 H+ .500 O2(aq) 4.000 U++++ -44.1538 -45.3386 -46.4240 -47.6121 -48.6916 -49.6768 -50.5794 -51.4094 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components UF4(c) type= formula= UF4 mole vol.= 0.0000 cc mole wt.= 314.0226 g 2 species in reaction 4.000 F- 1.000 U++++ -17.3381 -17.9998 -18.6060 -19.2696 -19.8725 -20.4227 -20.9268 -21.3904 * used van't Hoff equation to compute logKs UF4:2.5H2O type= formula= UF4:2.5H2O mole vol.= 0.0000 cc mole wt.= 359.0626 g 3 species in reaction 2.500 H2O 4.000 F- 1.000 U++++ -27.5306 -27.5511 -27.5700 -27.5906 -27.6094 -27.6265 -27.6422 -27.6566 * used van't Hoff equation to compute logKs UO2(a) type= formula= UO2 mole vol.= 0.0000 cc mole wt.= 270.0290 g 3 species in reaction 2.000 H2O -4.000 H+ 1.000 U++++ .1000 .1000 .1000 .1000 .1000 .1000 .1000 .1000 * used van't Hoff equation to compute logKs UO2HPO4:4H2O type= formula= UO2HPO4:4H2O mole vol.= 0.0000 cc mole wt.= 438.0748 g 4 species in reaction 4.000 H2O 1.000 PO4--- 1.000 UO2++ 1.000 H+ -24.4328 -24.3092 -24.1960 -24.0721 -23.9595 -23.8567 -23.7625 -23.6759 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components UO3(gamma) type= formula= UO3 mole vol.= 0.0000 cc mole wt.= 286.0290 g 3 species in reaction 1.000 H2O 1.000 UO2++ -2.000 H+ 9.0148 8.3385 7.7190 7.0408 6.4247 5.8624 5.3472 4.8734 * used van't Hoff equation to compute logKs Uramphite type= formula= (NH4)2(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 766.0830 g 3 species in reaction 2.000 PO4--- 2.000 UO2++ 2.000 NH4+ -52.3997 -52.0601 -51.7490 -51.4084 -51.0990 -50.8166 -50.5579 -50.3200 * used van't Hoff equation to compute logKs Uraninite(c) type= formula= UO2 mole vol.= 0.0000 cc mole wt.= 270.0290 g 3 species in reaction 2.000 H2O -4.000 H+ 1.000 U++++ -3.5515 -4.2031 -4.8000 -5.4534 -6.0471 -6.5888 -7.0852 -7.5417 * used van't Hoff equation to compute logKs Uranocircite type= formula= Ba(UO2)2(PO4)2 mole vol.= 0.0000 cc mole wt.= 867.3456 g 3 species in reaction 2.000 PO4--- 1.000 Ba++ 2.000 UO2++ -43.9534 -44.3070 -44.6310 -44.9856 -45.3078 -45.6018 -45.8712 -46.1190 * used van't Hoff equation to compute logKs Uranophane type= formula= Ca(UO2)2(SiO3OH)2 mole vol.= 0.0000 cc mole wt.= 766.3226 g 4 species in reaction 2.000 UO2++ 1.000 Ca++ 2.000 H4SiO4 -6.000 H+ 17.4890 17.4890 17.4890 17.4890 17.4890 17.4890 17.4890 17.4890 * used van't Hoff equation to compute logKs Vivianite type= formula= Fe3(PO4)2:8H2O mole vol.= 0.0000 cc mole wt.= 501.6166 g 3 species in reaction 3.000 Fe++ 8.000 H2O 2.000 PO4--- -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 * used van't Hoff equation to compute logKs Wairakite type= formula= CaAl2Si4O12:2H2O mole vol.= 0.0000 cc mole wt.= 434.4122 g 5 species in reaction 2.000 Al+++ -2.000 H2O 1.000 Ca++ 4.000 H4SiO4 -8.000 H+ 22.5951 20.5094 18.6223 16.5851 14.7624 13.1249 11.6482 10.3119 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Willemite type= formula= Zn2SiO4 mole vol.= 0.0000 cc mole wt.= 222.8243 g 3 species in reaction 1.000 H4SiO4 2.000 Zn++ -4.000 H+ 17.5687 16.4004 15.3300 14.1584 13.0939 12.1224 11.2323 10.4138 * used van't Hoff equation to compute logKs Witherite type= formula= BaCO3 mole vol.= 0.0000 cc mole wt.= 197.3511 g 2 species in reaction 1.000 CO3-- 1.000 Ba++ -8.7373 -8.6135 -8.5617 -8.5717 -8.6398 -8.7483 -8.8838 -9.0352 * used analytic equation to compute logKs Wurtzite type= formula= ZnS mole vol.= 0.0000 cc mole wt.= 97.4340 g 3 species in reaction 1.000 H2S 1.000 Zn++ -2.000 H+ -2.6697 -2.7196 -2.7403 -2.7316 -2.6909 -2.6225 -2.5298 -2.4158 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Zincite(c) type= formula= ZnO mole vol.= 0.0000 cc mole wt.= 81.3700 g 3 species in reaction 1.000 H2O 1.000 Zn++ -2.000 H+ 12.6065 11.8412 11.1400 10.3725 9.6751 9.0388 8.4557 7.9195 * used van't Hoff equation to compute logKs Zincosite type= formula= ZnSO4 mole vol.= 0.0000 cc mole wt.= 161.4340 g 2 species in reaction 1.000 SO4-- 1.000 Zn++ 4.2981 3.6258 3.0100 2.3359 1.7234 1.1645 .6523 .1814 * used van't Hoff equation to compute logKs Zn(BO2)2 type= formula= Zn(BO2)2 mole vol.= 0.0000 cc mole wt.= 150.9900 g 4 species in reaction -2.000 H2O 2.000 H3BO3 1.000 Zn++ -2.000 H+ 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 8.2900 * used van't Hoff equation to compute logKs Zn(NO3)2:6H2O type= formula= Zn(NO3)2:6H2O mole vol.= 0.0000 cc mole wt.= 297.4794 g 3 species in reaction 6.000 H2O 1.000 Zn++ 2.000 NO3- 3.0704 3.2633 3.4400 3.6335 3.8092 3.9696 4.1166 4.2518 * used van't Hoff equation to compute logKs Zn(OH)2-a type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 12.4500 12.4500 12.4500 12.4500 12.4500 12.4500 12.4500 12.4500 * used van't Hoff equation to compute logKs Zn(OH)2-b type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 11.7500 11.7500 11.7500 11.7500 11.7500 11.7500 11.7500 11.7500 * used van't Hoff equation to compute logKs Zn(OH)2-c type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 12.2000 12.2000 12.2000 12.2000 12.2000 12.2000 12.2000 12.2000 * used van't Hoff equation to compute logKs Zn(OH)2-e type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 * used van't Hoff equation to compute logKs Zn(OH)2-g type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 11.7100 11.7100 11.7100 11.7100 11.7100 11.7100 11.7100 11.7100 * used van't Hoff equation to compute logKs Zn2(OH)2SO4 type= formula= Zn2(OH)2SO4 mole vol.= 0.0000 cc mole wt.= 260.8200 g 4 species in reaction 2.000 H2O 1.000 SO4-- 2.000 Zn++ -2.000 H+ 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 7.5000 * used van't Hoff equation to compute logKs Zn2(OH)3Cl type= formula= Zn2(OH)3Cl mole vol.= 0.0000 cc mole wt.= 217.2170 g 4 species in reaction 3.000 H2O 1.000 Cl- 2.000 Zn++ -3.000 H+ 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 * used van't Hoff equation to compute logKs Zn3(AsO4)2:2.5w type= formula= Zn3(AsO4)2:2.5H2O mole vol.= 0.0000 cc mole wt.= 518.9932 g 4 species in reaction 2.500 H2O 2.000 H3AsO4 3.000 Zn++ -6.000 H+ 15.1343 14.8941 14.6740 14.4331 14.2142 14.0145 13.8315 13.6632 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Zn3(PO4)2:4w type= formula= Zn3(PO4)2:4H2O mole vol.= 0.0000 cc mole wt.= 458.1216 g 3 species in reaction 4.000 H2O 2.000 PO4--- 3.000 Zn++ -32.0400 -32.0400 -32.0400 -32.0400 -32.0400 -32.0400 -32.0400 -32.0400 * used van't Hoff equation to compute logKs Zn3O(SO4)2 type= formula= ZnO:2ZnSO4 mole vol.= 0.0000 cc mole wt.= 404.2380 g 4 species in reaction 1.000 H2O 2.000 SO4-- 3.000 Zn++ -2.000 H+ 23.1793 21.0087 19.0200 16.8432 14.8653 13.0604 11.4067 9.8859 * used van't Hoff equation to compute logKs Zn4(OH)6SO4 type= formula= Zn4(OH)6SO4 mole vol.= 0.0000 cc mole wt.= 459.5920 g 4 species in reaction 6.000 H2O 1.000 SO4-- 4.000 Zn++ -6.000 H+ 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 * used van't Hoff equation to compute logKs Zn5(OH)8Cl2 type= formula= Zn5(OH)8Cl2 mole vol.= 0.0000 cc mole wt.= 533.8200 g 4 species in reaction 8.000 H2O 2.000 Cl- 5.000 Zn++ -8.000 H+ 38.5000 38.5000 38.5000 38.5000 38.5000 38.5000 38.5000 38.5000 * used van't Hoff equation to compute logKs ZnBr2:2H2O type= formula= ZnBr2:2H2O mole vol.= 0.0000 cc mole wt.= 261.2100 g 3 species in reaction 2.000 H2O 1.000 Zn++ 2.000 Br- 5.7138 5.4509 5.2100 4.9463 4.7068 4.4881 4.2878 4.1036 * used van't Hoff equation to compute logKs ZnCl2 type= formula= ZnCl2 mole vol.= 0.0000 cc mole wt.= 136.2760 g 2 species in reaction 2.000 Cl- 1.000 Zn++ 8.2027 7.5907 7.0300 6.4163 5.8587 5.3498 4.8835 4.4548 * used van't Hoff equation to compute logKs ZnCO3:H2O type= formula= ZnCO3:H2O mole vol.= 0.0000 cc mole wt.= 143.3971 g 3 species in reaction 1.000 H2O 1.000 CO3-- 1.000 Zn++ -10.2600 -10.2600 -10.2600 -10.2600 -10.2600 -10.2600 -10.2600 -10.2600 * used van't Hoff equation to compute logKs ZnF2 type= formula= ZnF2 mole vol.= 0.0000 cc mole wt.= 103.3668 g 2 species in reaction 1.000 Zn++ 2.000 F- -.6425 -1.1005 -1.5200 -1.9792 -2.3965 -2.7773 -3.1262 -3.4470 * used van't Hoff equation to compute logKs ZnI2 type= formula= ZnI2 mole vol.= 0.0000 cc mole wt.= 319.1788 g 2 species in reaction 2.000 I- 1.000 Zn++ 8.1316 7.6611 7.2300 6.7581 6.3294 5.9381 5.5796 5.2500 * used van't Hoff equation to compute logKs ZnMetal type= formula= Zn mole vol.= 0.0000 cc mole wt.= 65.3700 g 4 species in reaction 1.000 H2O 1.000 Zn++ -2.000 H+ -.500 O2(aq) 75.7857 72.1384 68.7970 65.1394 61.8162 58.7835 56.0048 53.4496 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components ZnO(a) type= formula= ZnO mole vol.= 0.0000 cc mole wt.= 81.3700 g 3 species in reaction 1.000 H2O 1.000 Zn++ -2.000 H+ 11.3100 11.3100 11.3100 11.3100 11.3100 11.3100 11.3100 11.3100 * used van't Hoff equation to compute logKs ZnS(a) type= formula= ZnS mole vol.= 0.0000 cc mole wt.= 97.4340 g 3 species in reaction 1.000 H2S 1.000 Zn++ -2.000 H+ -1.9465 -2.0450 -2.1103 -2.1504 -2.1540 -2.1261 -2.0705 -1.9906 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components ZnSiO3 type= formula= ZnSiO3 mole vol.= 0.0000 cc mole wt.= 141.4543 g 4 species in reaction -1.000 H2O 1.000 H4SiO4 1.000 Zn++ -2.000 H+ 4.1557 3.5160 2.9300 2.2885 1.7057 1.1738 .6865 .2384 * used van't Hoff equation to compute logKs ZnSO4:H2O type= formula= ZnSO4:H2O mole vol.= 0.0000 cc mole wt.= 179.4500 g 3 species in reaction 1.000 H2O 1.000 SO4-- 1.000 Zn++ .1438 -.2287 -.5700 -.9436 -1.2830 -1.5927 -1.8765 -2.1375 * used van't Hoff equation to compute logKs -end- 8 gases CH4(g) mole wt.= 16.0431 g chi= -537.779 1.54946 -.000927827 1.20861 -.00370814 3.33804e-6 Pcrit= 46.0 bar Tcrit= 190.4 K omega= .011 1 species in reaction 1.000 CH4 -2.6337 -2.7518 -2.8600 -2.9784 -3.0860 -3.1842 -3.2742 -3.3569 * used van't Hoff equation to compute logKs CO2(g) mole wt.= 44.0111 g chi= -1430.87 3.598 -.00227376 3.47644 -.0104247 8.46271e-6 Pcrit= 73.8 bar Tcrit= 304.1 K omega= .239 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ -18.3155 -18.2032 -18.1487 -18.1440 -18.1922 -18.2827 -18.4075 -18.5610 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components H2(g) mole wt.= 2.0160 g chi= -12.5908 .259789 -7.2473e-5 .00471947 -2.69962e-5 2.15622e-8 Pcrit= 13.0 bar Tcrit= 33.2 K omega= -.218 1 species in reaction 1.000 H2 -3.0320 -3.0936 -3.1500 -3.2118 -3.2679 -3.3191 -3.3660 -3.4091 * used van't Hoff equation to compute logKs H2O(g) mole wt.= 18.0160 g chi= -6191.41 14.8528 -.00914267 -66.3326 .18277 -.00013274 Pcrit= 221.2 bar Tcrit= 647.3 K omega= .344 a=-.0109 b= 0.0 1 species in reaction 1.000 H2O 2.2160 1.8475 1.5100 1.1405 .8048 .4985 .2178 -.0403 * used van't Hoff equation to compute logKs H2S(g) mole wt.= 34.0800 g Pcrit= 89.4 bar Tcrit= 373.2 K omega= .097 1 species in reaction 1.000 H2S -.6904 -.8504 -.9970 -1.1575 -1.3032 -1.4363 -1.5582 -1.6703 * used van't Hoff equation to compute logKs N2(g) mole wt.= 28.0134 g Pcrit= 33.9 bar Tcrit= 126.2 K omega= .039 1 species in reaction 1.000 N2 -3.1689 -3.2164 -3.2600 -3.3077 -3.3510 -3.3905 -3.4268 -3.4601 * used van't Hoff equation to compute logKs NH3(g) mole wt.= 17.0307 g Pcrit= 113.5 bar Tcrit= 405.5 K omega= .250 2 species in reaction 1.000 NH4+ -1.000 H+ 12.4022 11.6772 11.0142 10.2902 9.6340 9.0367 8.4911 7.9908 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components O2(g) mole wt.= 32.0000 g Pcrit= 50.4 bar Tcrit= 154.6 K omega= .025 1 species in reaction 1.000 O2(aq) -2.8363 -2.9009 -2.9600 -3.0247 -3.0836 -3.1372 -3.1864 -3.2317 * used van't Hoff equation to compute logKs -end- 0 oxides -end- * * This is the end of the data input for GWB programs. The following is the datafile used to produce * this dataset: * * ******************************** wateq4f.dat ********************************** * # $Revision: 2.4 $ * # Revised arsenic data from Archer and Nordstrom (2002) * * SOLUTION_MASTER_SPECIES * * Ag Ag+ 0.0 107.868 107.868 * Al Al+3 0.0 26.9815 26.9815 * Alkalinity CO3-2 1.0 50.05 50.05 * As H3AsO4 -1.0 74.9216 74.9216 * As(+3) H3AsO3 0.0 74.9216 74.9216 * As(+5) H3AsO4 -1.0 74.9216 * B H3BO3 0.0 10.81 10.81 * Ba Ba+2 0.0 137.34 137.34 * Br Br- 0.0 79.904 79.904 * C CO3-2 2.0 61.0173 12.0111 * C(+4) CO3-2 2.0 61.0173 * C(-4) CH4 0.0 16.042 * Ca Ca+2 0.0 40.08 40.08 * Cd Cd+2 0.0 112.4 112.4 * Cl Cl- 0.0 35.453 35.453 * Cs Cs+ 0.0 132.905 132.905 * Cu Cu+2 0.0 63.546 63.546 * Cu(+1) Cu+1 0.0 63.546 * Cu(+2) Cu+2 0.0 63.546 * E e- 0.0 0.0 0.0 * F F- 0.0 18.9984 18.9984 * Fe Fe+2 0.0 55.847 55.847 * Fe(+2) Fe+2 0.0 55.847 * Fe(+3) Fe+3 -2.0 55.847 * Fulvate Fulvate-2 0.0 650. 650. * H H+ -1. 1.008 1.008 * H(0) H2 0.0 1.008 * H(1) H+ -1. 1.008 * Humate Humate-2 0.0 2000. 2000. * I I- 0.0 126.9044 126.9044 * K K+ 0.0 39.102 39.102 * Li Li+ 0.0 6.939 6.939 * Mg Mg+2 0.0 24.312 24.312 * Mn Mn+2 0.0 54.938 54.938 * Mn(2) Mn+2 0.0 54.938 * Mn(3) Mn+3 0.0 54.938 * Mn(6) MnO4-2 0.0 54.938 * Mn(7) MnO4- 0.0 54.938 * N NO3- 0.0 14.0067 14.0067 * N(-3) NH4+ 0.0 14.0067 * N(0) N2 0.0 14.0067 * N(+3) NO2- 0.0 14.0067 * N(+5) NO3- 0.0 14.0067 * Na Na+ 0.0 22.9898 22.9898 * Ni Ni+2 0.0 58.71 58.71 * O H2O 0.0 16.00 16.00 * O(-2) H2O 0.0 18.016 * O(0) O2 0.0 16.00 * P PO4-3 2.0 30.9738 30.9738 * Pb Pb+2 0.0 207.19 207.19 * Rb Rb+ 0.0 85.47 85.47 * S SO4-2 0.0 96.0616 32.064 * S(-2) H2S 0.0 32.064 * S(6) SO4-2 0.0 96.0616 * Se SeO4-2 0.0 78.96 78.96 * Se(-2) HSe- 0.0 78.96 * Se(4) SeO3-2 0.0 78.96 * Se(6) SeO4-2 0.0 78.96 * Si H4SiO4 0.0 60.0843 28.0843 * Sr Sr+2 0.0 87.62 87.62 * Zn Zn+2 0.0 65.37 65.37 * U UO2+2 0.0 238.0290 238.0290 * U(3) U+3 0.0 238.0290 238.0290 * U(4) U+4 0.0 238.0290 238.0290 * U(5) UO2+ 0.0 238.0290 238.0290 * U(6) UO2+2 0.0 238.0290 238.0290 * * SOLUTION_SPECIES * * #H+ primary master species * H+ = H+ * log_k 0.0 * -gamma 9.0 0.0 * * #e- primary master species * e- = e- * log_k 0.0 * * #H2O primary master species * H2O = H2O * log_k 0.0 * * #Ag+ primary master species * Ag+ = Ag+ * log_k 0.0 * * #Al+3 primary master species * Al+3 = Al+3 * log_k 0.0 * * #H3AsO4 primary master species * H3AsO4 = H3AsO4 * log_k 0.0 * * #H3BO3 primary master species * H3BO3 = H3BO3 * log_k 0.0 * * #Ba+2 primary master species * Ba+2 = Ba+2 * log_k 0.0 * * #Br- primary master species * Br- = Br- * log_k 0.0 * * #CO3-2 primary master species * CO3-2 = CO3-2 * log_k 0.0 * -gamma 5.4 0.0 * * #Ca+2 primary master species * Ca+2 = Ca+2 * log_k 0.0 * -gamma 5.0 0.165 * * #Cd+2 primary master species * Cd+2 = Cd+2 * log_k 0.0 * * #Cl- primary master species * Cl- = Cl- * log_k 0.0 * -gamma 3.5 0.015 * * #Cs+ primary master species * Cs+ = Cs+ * log_k 0.0 * * #Cu+2 primary master species * Cu+2 = Cu+2 * log_k 0.0 * * #F- primary master species * F- = F- * log_k 0.0 * * #Fe+2 primary master species * Fe+2 = Fe+2 * log_k 0.0 * * #Fulvate-2 primary master species * Fulvate-2 = Fulvate-2 * log_k 0.0 * * #Humate-2 primary master species * Humate-2 = Humate-2 * log_k 0.0 * * #I- primary master species * I- = I- * log_k 0.0 * * #K+ primary master species * K+ = K+ * log_k 0.0 * -gamma 3.5 0.015 * * #Li+ primary master species * Li+ = Li+ * log_k 0.0 * * #Mg+2 primary master species * Mg+2 = Mg+2 * log_k 0.0 * -gamma 5.5 0.200 * * #Mn+2 primary master species * Mn+2 = Mn+2 * log_k 0.0 * * #NO3- primary master species * NO3- = NO3- * log_k 0.0 * * #Na+ primary master species * Na+ = Na+ * log_k 0.0 * -gamma 4.0 0.075 * * #Ni+2 primary master species * Ni+2 = Ni+2 * log_k 0.0 * * #PO4-3 primary master species * PO4-3 = PO4-3 * log_k 0.0 * * #Pb+2 primary master species * Pb+2 = Pb+2 * log_k 0.0 * * #Rb+ primary master species * Rb+ = Rb+ * log_k 0.0 * * #SO4-2 primary master species * SO4-2 = SO4-2 * log_k 0.0 * -gamma 5.0 -0.040 * * #SeO4-2 primary master species * SeO4-2 = SeO4-2 * log_k 0.0 * * #H4SiO4 primary master species * H4SiO4 = H4SiO4 * log_k 0.0 * * #Sr+2 primary master species * Sr+2 = Sr+2 * log_k 0.0 * -gamma 5.26 0.121 * * #UO2+2 primary master species * UO2+2 = UO2+2 * log_k 0.0 * * #Zn+2 primary master species * Zn+2 = Zn+2 * log_k 0.0 * * #Fe+3 secondary master species 0 * Fe+2 = Fe+3 + e- * log_k -13.020 * delta_h 9.680 kcal * * #FeOH+2 1 * Fe+3 + H2O = FeOH+2 + H+ * log_k -2.19 * delta_h 10.4 kcal * * #FeOH+ 2 * Fe+2 + H2O = FeOH+ + H+ * log_k -9.5 * delta_h 13.2 kcal * * #Fe(OH)3- 3 * Fe+2 + 3H2O = Fe(OH)3- + 3H+ * log_k -31.0 * delta_h 30.3 kcal * * #FeSO4+ 4 * Fe+3 + SO4-2 = FeSO4+ * log_k 4.04 * delta_h 3.91 kcal * * #FeCl+2 5 * Fe+3 + Cl- = FeCl+2 * log_k 1.48 * delta_h 5.6 kcal * * #FeCl2+ 6 * Fe+3 + 2Cl- = FeCl2+ * log_k 2.13 * * #FeCl3 7 * Fe+3 + 3Cl- = FeCl3 * log_k 1.13 * * #FeSO4 8 * Fe+2 + SO4-2 = FeSO4 * log_k 2.25 * delta_h 3.23 kcal * * #H3SiO4- 13 * H4SiO4 = H3SiO4- + H+ * log_k -9.83 * delta_h 6.12 kcal * -analytical -302.3724 -0.050698 15669.69 108.18466 -1119669.0 * * #H2SiO4-2 14 * H4SiO4 = H2SiO4-2 + 2H+ * log_k -23.0 * delta_h 17.6 kcal * -analytical -294.0184 -0.07265 11204.49 108.18466 -1119669.0 * * #HPO4-2 15 * H+ + PO4-3 = HPO4-2 * log_k 12.346 * delta_h -3.53 kcal * * #H2PO4- 16 * 2H+ + PO4-3 = H2PO4- * log_k 19.553 * delta_h -4.52 kcal * * #MgF+ 22 * Mg+2 + F- = MgF+ * log_k 1.82 * delta_h 3.2 kcal * * #CaSO4 23 * Ca+2 + SO4-2 = CaSO4 * log_k 2.3 * delta_h 1.65 kcal * * #MgOH+ 24 * Mg+2 + H2O = MgOH+ + H+ * log_k -11.44 * delta_h 15.952 kcal * * #H3BO3 25 * H3BO3 = H2BO3- + H+ * log_k -9.24 * delta_h 3.224 kcal * # -analytical 24.3919 0.012078 -1343.9 -13.2258 * * #NH3 26 * NH4+ = NH3 + H+ * log_k -9.252 * delta_h 12.48 kcal * -analytic 0.6322 -0.001225 -2835.76 * * #NaHPO4- 30 * Na+ + HPO4-2 = NaHPO4- * log_k 0.29 * * #KHPO4- 32 * K+ + HPO4-2 = KHPO4- * log_k 0.29 * * #MgHPO4 33 * Mg+2 + HPO4-2 = MgHPO4 * log_k 2.87 * delta_h 3.3 kcal * * #CaHPO4 34 * Ca+2 + HPO4-2 = CaHPO4 * log_k 2.739 * delta_h 3.3 kcal * * #CH4 secondary master species * CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O * log_k 41.071 * delta_h -61.039 kcal * * #H2CO3 35 * # HCO3- + H+ = H2CO3 * # log_k 6.351 * # delta_h -2.247 kcal * # -analytical 356.3094 0.06091960 -21834.37 -126.8339 1684915.0 * * #CO2 could be used instead of H2CO3 * CO3-2 + 2 H+ = CO2 + H2O * log_k 16.681 * delta_h -5.738 kcal * -analytical 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 * * #HCO3- 68 * H+ + CO3-2 = HCO3- * log_k 10.329 * delta_h -3.561 kcal * -analytical 107.8871 0.03252849 -5151.79 -38.92561 563713.9 * -gamma 5.4 0.0 * * #NaCO3- 69 * Na+ + CO3-2 = NaCO3- * log_k 1.27 * delta_h 8.91 kcal * * #NaHCO3 70 * Na+ + HCO3- = NaHCO3 * log_k -0.25 * * #NaSO4- 71 * Na+ + SO4-2 = NaSO4- * log_k 0.7 * delta_h 1.12 kcal * * #KSO4- 72 * K+ + SO4-2 = KSO4- * log_k 0.85 * delta_h 2.25 kcal * -analytical 3.106 0.0 -673.6 * * #MgCO3 73 * Mg+2 + CO3-2 = MgCO3 * log_k 2.98 * delta_h 2.713 kcal * -analytical 0.9910 0.00667 * * #MgHCO3+ 74 * Mg+2 + HCO3- = MgHCO3+ * log_k 1.07 * delta_h 0.79 kcal * -analytical -59.215 0.0 2537.455 20.92298 0.0 * * #MgSO4 75 * Mg+2 + SO4-2 = MgSO4 * log_k 2.37 * delta_h 4.55 kcal * * #CaOH+ 76 * Ca+2 + H2O = CaOH+ + H+ * log_k -12.78 * * #CaHCO3+ 77 * Ca+2 + HCO3- = CaHCO3+ * log_k 1.106 * delta_h 2.69 kcal * -analytical 1209.12 0.31294 -34765.05 -478.782 0.0 * * #CaCO3 78 * Ca+2 + CO3-2 = CaCO3 * log_k 3.224 * delta_h 3.545 kcal * -analytical -1228.732 -0.299444 35512.75 485.818 0.0 * * #SrHCO3+ 79 * Sr+2 + HCO3- = SrHCO3+ * log_k 1.18 * delta_h 6.05 kcal * -analytical -3.248 0.014867 0.0 0.0 0.0 * -gamma 5.4 0.0 * * #AlOH+2 80 * Al+3 + H2O = AlOH+2 + H+ * log_k -5.0 * delta_h 11.49 kcal * -analytical -38.253 0.0 -656.27 14.327 0.0 * * #Al(OH)2+ 81 * Al+3 + 2H2O = Al(OH)2+ + 2H+ * log_k -10.1 * delta_h 26.9 kcal * -analytical 88.5 0.0 -9391.6 -27.121 0.0 * * #Al(OH)3 336 * Al+3 + 3H2O = Al(OH)3 + 3H+ * log_k -16.9 * delta_h 39.89 kcal * -analytical 226.374 0.0 -18247.8 -73.597 0.0 * * #Al(OH)4- 82 * Al+3 + 4H2O = Al(OH)4- + 4H+ * log_k -22.7 * delta_h 42.3 kcal * -analytical 51.578 0.0 -11168.9 -14.865 0.0 * * #AlF+2 83 * Al+3 + F- = AlF+2 * log_k 7.0 * delta_h 1.06 kcal * * #AlF2+ 84 * Al+3 + 2F- = AlF2+ * log_k 12.7 * delta_h 1.98 kcal * * #AlF3 85 * Al+3 + 3F- = AlF3 * log_k 16.8 * delta_h 2.16 kcal * * #AlF4- 86 * Al+3 + 4F- = AlF4- * log_k 19.4 * delta_h 2.2 kcal * * #AlSO4+ 87 * Al+3 + SO4-2 = AlSO4+ * log_k 3.5 * delta_h 2.29 kcal * * #Al(SO4)2- 88 * Al+3 + 2SO4-2 = Al(SO4)2- * log_k 5.0 * delta_h 3.11 kcal * * #HSO4- 89 * H+ + SO4-2 = HSO4- * log_k 1.988 * delta_h 3.85 kcal * -analytical -56.889 0.006473 2307.9 19.8858 0.0 * * #H2S secondary master species 90 * SO4-2 + 10H+ + 8e- = H2S + 4H2O * log_k 40.644 * delta_h -65.44 kcal * * #HS- 91 * H2S = HS- + H+ * log_k -6.994 * delta_h 5.3 kcal * -analytical 11.17 -0.02386 -3279.0 * * #S-2 92 * HS- = S-2 + H+ * log_k -12.918 * delta_h 12.1 kcal * * #oxy 93 * # 0.5H2O = 0.25O2 + H+ + e- * # log_k -20.780 * # delta_h 34.157000 kcal * * #O2 secondary master species * 2H2O = O2 + 4H+ + 4e- * log_k -86.08 * delta_h 134.79 kcal * * #H2 secondary master species * 2 H+ + 2 e- = H2 * log_k -3.15 * delta_h -1.759 kcal * * #Fe(OH)2+ 102 * Fe+3 + 2H2O = Fe(OH)2+ + 2H+ * log_k -5.67 * delta_h 17.1 kcal * * #Fe(OH)3 103 * Fe+3 + 3H2O = Fe(OH)3 + 3H+ * log_k -12.56 * delta_h 24.8 kcal * * #Fe(OH)4- 104 * Fe+3 + 4H2O = Fe(OH)4- + 4H+ * log_k -21.6 * delta_h 31.9 kcal * * #Fe(OH)2 105 * Fe+2 + 2H2O = Fe(OH)2 + 2H+ * log_k -20.57 * delta_h 28.565 kcal * * #FeH2PO4+ 120 * Fe+2 + H2PO4- = FeH2PO4+ * log_k 2.7 * * #CaPO4- 121 * Ca+2 + PO4-3 = CaPO4- * log_k 6.459 * delta_h 3.1 kcal * * #CaH2PO4+ 122 * Ca+2 + H2PO4- = CaH2PO4+ * log_k 1.408 * delta_h 3.4 kcal * * #MgPO4- 123 * Mg+2 + PO4-3 = MgPO4- * log_k 6.589 * delta_h 3.1 kcal * * #MgH2PO4+ 124 * Mg+2 + H2PO4- = MgH2PO4+ * log_k 1.513 * delta_h 3.4 kcal * * #LiSO4- 126 * Li+ + SO4-2 = LiSO4- * log_k 0.64 * * #N2 secondary master species * 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O * log_k 207.080 * delta_h -312.130 kcal * * #NH4 secondary master species 127 * NO3- + 10H+ + 8e- = NH4+ + 3H2O * log_k 119.077 * delta_h -187.055 kcal * * #SrOH+ 129 * Sr+2 + H2O = SrOH+ + H+ * log_k -13.29 * -gamma 5.0 0.0 * * #BaOH+ 130 * Ba+2 + H2O = BaOH+ + H+ * log_k -13.47 * * #NH4SO4- 131 * NH4+ + SO4-2 = NH4SO4- * log_k 1.11 * * #SrCO3 135 * Sr+2 + CO3-2 = SrCO3 * log_k 2.81 * delta_h 5.22 kcal * -analytical -1.019 0.012826 0.0 0.0 0.0 * -gamma 5.0 0.0 * * #O2Sato 136 * # 0.5H2O = 0.25O2(aq) + H+ + e- * # log_k -11.385 * * #CO2 137 * # CO2 (g) + H2O = H2CO3 * # -1.468 -4.776 108.38650 0.01985076 -6919.530 -40.45154 -669365.0 * * #FeHPO4 138 * Fe+2 + HPO4-2 = FeHPO4 * log_k 3.6 * * #FeHPO4+ 139 * Fe+3 + HPO4-2 = FeHPO4+ * log_k 5.43 * delta_h 5.76 kcal * * #FeHSO4+ 148 * Fe+2 + HSO4- = FeHSO4+ * log_k 1.08 * * #O2calc 151 * # 0.5H2O = 0.25O2(aq) + H+ + e- * # log_k -20.780 * # delta_h 33.457 kcal * * #OH- 152 * H2O = OH- + H+ * log_k -14.0 * delta_h 13.362 kcal * -analytical -283.971 -0.05069842 13323.0 102.24447 -1119669.0 * * #FeH2PO4+2 156 * Fe+3 + H2PO4- = FeH2PO4+2 * log_k 5.43 * * #FeHSO4+2 159 * Fe+3 + HSO4- = FeHSO4+2 * log_k 2.48 * * #CaF+ 160 * Ca+2 + F- = CaF+ * log_k 0.94 * delta_h 4.12 kcal * * #BF(OH)3- 161 * H3BO3 + F- = BF(OH)3- * log_k -0.4 * delta_h 1.85 kcal * * #BF2(OH)2- 162 * H3BO3 + H+ + 2F- = BF2(OH)2- + H2O * log_k 7.63 * delta_h 1.618 kcal * * #BF3OH- 163 * H3BO3 + 2H+ + 3F- = BF3OH- + 2H2O * log_k 13.67 * delta_h -1.614 kcal * * #BF4- 164 * H3BO3 + 3H+ + 4F- = BF4- + 3H2O * log_k 20.28 * delta_h -1.846 kcal * * #FeF+2 165 * Fe+3 + F- = FeF+2 * log_k 6.2 * delta_h 2.7 kcal * * #FeF2+ 166 * Fe+3 + 2F- = FeF2+ * log_k 10.8 * delta_h 4.8 kcal * * #FeF3 167 * Fe+3 + 3F- = FeF3 * log_k 14.0 * delta_h 5.4 kcal * * #CaHSO4+ 168 * Ca+2 + HSO4- = CaHSO4+ * log_k 1.08 * * #Mn+3 secondary master species 169 * Mn+2 = Mn+3 + e- * log_k -25.51 * delta_h 25.8 kcal * * #MnCl+ 170 * Mn+2 + Cl- = MnCl+ * log_k 0.61 * * #MnCl2 171 * Mn+2 + 2Cl- = MnCl2 * log_k 0.25 * * #MnCl3- 172 * Mn+2 + 3Cl- = MnCl3- * log_k -0.31 * * #MnOH+ 173 * Mn+2 + H2O = MnOH+ + H+ * log_k -10.59 * delta_h 14.4 kcal * * #Mn(OH)3- 174 * Mn+2 + 3H2O = Mn(OH)3- + 3H+ * log_k -34.8 * * #MnF+ 175 * Mn+2 + F- = MnF+ * log_k 0.84 * * #MnSO4 176 * Mn+2 + SO4-2 = MnSO4 * log_k 2.25 * delta_h 3.37 kcal * * #Mn(NO3)2 177 * Mn+2 + 2NO3- = Mn(NO3)2 * log_k 0.6 * delta_h -0.396 kcal * * #MnHCO3+ 178 * Mn+2 + HCO3- = MnHCO3+ * log_k 1.95 * * #MnO4- secondary master species 179 * Mn+2 + 4H2O = MnO4- + 8H+ + 5e- * log_k -127.824 * delta_h 176.62 kcal * * #MnO4-2 secondary master species 180 * Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e- * log_k -118.44 * delta_h 150.02 kcal * * #SiF6-2 201 * H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2O * log_k 30.18 * delta_h -16.26 kcal * * #HF 202 * H+ + F- = HF * log_k 3.18 * delta_h 3.18 kcal * -analytical -2.033 0.012645 429.01 0.0 0.0 * * #HF2- 203 * H+ + 2F- = HF2- * log_k 3.76 * delta_h 4.55 kcal * * #CuCl2- 206 * # Cu+2 + 2Cl- + e- = CuCl2- * # log_k 8.220 * # delta_h 1.230 kcal * Cu+ + 2Cl- = CuCl2- * log_k 5.50 * delta_h -0.42 kcal * * #CuCl3-2 207 * # Cu+2 + 3Cl- + e- = CuCl3-2 * # log_k 8.420 * # delta_h 1.910 kcal * Cu+ + 3Cl- = CuCl3-2 * log_k 5.70 * delta_h 0.26 kcal * * #Cu+ secondary master species 208 * Cu+2 + e- = Cu+ * log_k 2.72 * delta_h 1.65 kcal * * #CuCO3 209 * Cu+2 + CO3-2 = CuCO3 * log_k 6.73 * * #Cu(CO3)2-2 210 * Cu+2 + 2CO3-2 = Cu(CO3)2-2 * log_k 9.83 * * #CuCl+ 211 * Cu+2 + Cl- = CuCl+ * log_k 0.43 * delta_h 8.65 kcal * * #CuCl2 212 * Cu+2 + 2Cl- = CuCl2 * log_k 0.16 * delta_h 10.56 kcal * * #CuCl3- 213 * Cu+2 + 3Cl- = CuCl3- * log_k -2.29 * delta_h 13.69 kcal * * #CuCl4-2 214 * Cu+2 + 4Cl- = CuCl4-2 * log_k -4.59 * delta_h 17.78 kcal * * #CuF+ 215 * Cu+2 + F- = CuF+ * log_k 1.26 * delta_h 1.62 kcal * * #CuOH+ 216 * Cu+2 + H2O = CuOH+ + H+ * log_k -8.0 * * #Cu(OH)2 217 * Cu+2 + 2H2O = Cu(OH)2 + 2H+ * log_k -13.68 * * #Cu(OH)3- 218 * Cu+2 + 3H2O = Cu(OH)3- + 3H+ * log_k -26.9 * * #Cu(OH)4-2 219 * Cu+2 + 4H2O = Cu(OH)4-2 + 4H+ * log_k -39.6 * * #Cu2(OH)2+2 220 * 2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+ * log_k -10.359 * delta_h 17.539 kcal * -analytical 2.497 0.0 -3833.0 0.0 0.0 * * #CuSO4 221 * Cu+2 + SO4-2 = CuSO4 * log_k 2.31 * delta_h 1.22 kcal * * #Cu(HS)3- 222 * Cu+2 + 3HS- = Cu(HS)3- * log_k 25.9 * * #ZnCl+ 251 * Zn+2 + Cl- = ZnCl+ * log_k 0.43 * delta_h 7.79 kcal * * #ZnCl2 252 * Zn+2 + 2Cl- = ZnCl2 * log_k 0.45 * delta_h 8.5 kcal * * #ZnCl3- 253 * Zn+2 + 3Cl- = ZnCl3- * log_k 0.5 * delta_h 9.56 kcal * * #ZnCl4-2 254 * Zn+2 + 4Cl- = ZnCl4-2 * log_k 0.2 * delta_h 10.96 kcal * * #ZnF+ 255 * Zn+2 + F- = ZnF+ * log_k 1.15 * delta_h 2.22 kcal * * #ZnOH+ 256 * Zn+2 + H2O = ZnOH+ + H+ * log_k -8.96 * delta_h 13.4 kcal * * #Zn(OH)2 257 * Zn+2 + 2H2O = Zn(OH)2 + 2H+ * log_k -16.9 * * #Zn(OH)3- 258 * Zn+2 + 3H2O = Zn(OH)3- + 3H+ * log_k -28.4 * * #Zn(OH)4-2 259 * Zn+2 + 4H2O = Zn(OH)4-2 + 4H+ * log_k -41.2 * * #ZnOHCl 260 * Zn+2 + H2O + Cl- = ZnOHCl + H+ * log_k -7.48 * * #Zn(HS)2 261 * Zn+2 + 2HS- = Zn(HS)2 * log_k 14.94 * * #Zn(HS)3- 262 * Zn+2 + 3HS- = Zn(HS)3- * log_k 16.1 * * #ZnSO4 263 * Zn+2 + SO4-2 = ZnSO4 * log_k 2.37 * delta_h 1.36 kcal * * #Zn(SO4)2-2 264 * Zn+2 + 2SO4-2 = Zn(SO4)2-2 * log_k 3.28 * * #CdCl+ 294 * Cd+2 + Cl- = CdCl+ * log_k 1.98 * delta_h 0.59 kcal * * #CdCl2 295 * Cd+2 + 2Cl- = CdCl2 * log_k 2.6 * delta_h 1.24 kcal * * #CdCl3- 296 * Cd+2 + 3Cl- = CdCl3- * log_k 2.4 * delta_h 3.9 kcal * * #CdF+ 297 * Cd+2 + F- = CdF+ * log_k 1.1 * * #CdF2 298 * Cd+2 + 2F- = CdF2 * log_k 1.5 * * #Cd(CO3)2-2 299 * Cd+2 + 2CO3-2 = Cd(CO3)2-2 * log_k 6.4 * * #CdOH+ 300 * Cd+2 + H2O = CdOH+ + H+ * log_k -10.08 * delta_h 13.1 kcal * * #Cd(OH)2 301 * Cd+2 + 2H2O = Cd(OH)2 + 2H+ * log_k -20.35 * * #Cd(OH)3- 302 * Cd+2 + 3H2O = Cd(OH)3- + 3H+ * log_k -33.3 * * #Cd(OH)4-2 303 * Cd+2 + 4H2O = Cd(OH)4-2 + 4H+ * log_k -47.35 * * #Cd2OH+3 304 * 2Cd+2 + H2O = Cd2OH+3 + H+ * log_k -9.39 * delta_h 10.9 kcal * * #CdOHCl 305 * Cd+2 + H2O + Cl- = CdOHCl + H+ * log_k -7.404 * delta_h 4.355 kcal * * #CdNO3+ 306 * Cd+2 + NO3- = CdNO3+ * log_k 0.4 * delta_h -5.2 kcal * * #CdSO4 307 * Cd+2 + SO4-2 = CdSO4 * log_k 2.46 * delta_h 1.08 kcal * * #CdHS+ 308 * Cd+2 + HS- = CdHS+ * log_k 10.17 * * #Cd(HS)2 309 * Cd+2 + 2HS- = Cd(HS)2 * log_k 16.53 * * #Cd(HS)3- 310 * Cd+2 + 3HS- = Cd(HS)3- * log_k 18.71 * * #Cd(HS)4-2 311 * Cd+2 + 4HS- = Cd(HS)4-2 * log_k 20.9 * * #Fe(SO4)2- 333 * Fe+3 + 2SO4-2 = Fe(SO4)2- * log_k 5.38 * delta_h 4.6 kcal * * #Fe2(OH)2+4 334 * 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+ * log_k -2.95 * delta_h 13.5 kcal * * #Fe3(OH)4+5 335 * 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+ * log_k -6.3 * delta_h 14.3 kcal * * #PbCl+ 341 * Pb+2 + Cl- = PbCl+ * log_k 1.6 * delta_h 4.38 kcal * * #PbCl2 342 * Pb+2 + 2Cl- = PbCl2 * log_k 1.8 * delta_h 1.08 kcal * * #PbCl3- 343 * Pb+2 + 3Cl- = PbCl3- * log_k 1.7 * delta_h 2.17 kcal * * #PbCl4-2 344 * Pb+2 + 4Cl- = PbCl4-2 * log_k 1.38 * delta_h 3.53 kcal * * #Pb(CO3)2-2 345 * Pb+2 + 2CO3-2 = Pb(CO3)2-2 * log_k 10.64 * * #PbF+ 346 * Pb+2 + F- = PbF+ * log_k 1.25 * * #PbF2 347 * Pb+2 + 2F- = PbF2 * log_k 2.56 * * #PbF3- 348 * Pb+2 + 3F- = PbF3- * log_k 3.42 * * #PbF4-2 349 * Pb+2 + 4F- = PbF4-2 * log_k 3.1 * * #PbOH+ 350 * Pb+2 + H2O = PbOH+ + H+ * log_k -7.71 * * #Pb(OH)2 351 * Pb+2 + 2H2O = Pb(OH)2 + 2H+ * log_k -17.12 * * #Pb(OH)3- 352 * Pb+2 + 3H2O = Pb(OH)3- + 3H+ * log_k -28.06 * * #Pb2OH+3 353 * 2Pb+2 + H2O = Pb2OH+3 + H+ * log_k -6.36 * * #PbNO3+ 354 * Pb+2 + NO3- = PbNO3+ * log_k 1.17 * * #PbSO4 355 * Pb+2 + SO4-2 = PbSO4 * log_k 2.75 * * #Pb(HS)2 356 * Pb+2 + 2HS- = Pb(HS)2 * log_k 15.27 * * #Pb(HS)3- 357 * Pb+2 + 3HS- = Pb(HS)3- * log_k 16.57 * * #Pb3(OH)4+2 358 * 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+ * log_k -23.88 * delta_h 26.5 kcal * * #FeF+ 359 * Fe+2 + F- = FeF+ * log_k 1.0 * * #AlHSO4+2 397 * Al+3 + HSO4- = AlHSO4+2 * log_k 0.46 * * #NO2 secondary master species 400 * NO3- + 2H+ + 2e- = NO2- + H2O * log_k 28.57 * delta_h -43.76 kcal * * #NiBr+ 403 * Ni+2 + Br- = NiBr+ * log_k 0.5 * * #NiCl+ 404 * Ni+2 + Cl- = NiCl+ * log_k 0.4 * * #NiF+ 405 * Ni+2 + F- = NiF+ * log_k 1.3 * * #NiOH+ 406 * Ni+2 + H2O = NiOH+ + H+ * log_k -9.86 * delta_h 12.42 kcal * * #Ni(OH)2 407 * Ni+2 + 2H2O = Ni(OH)2 + 2H+ * log_k -19.0 * * #Ni(OH)3- 408 * Ni+2 + 3H2O = Ni(OH)3- + 3H+ * log_k -30.0 * * #NiSO4 409 * Ni+2 + SO4-2 = NiSO4 * log_k 2.29 * delta_h 1.52 kcal * * #AgBr 421 * Ag+ + Br- = AgBr * log_k 4.24 * * #AgBr2- 422 * Ag+ + 2Br- = AgBr2- * log_k 7.28 * * #AgCl 423 * Ag+ + Cl- = AgCl * log_k 3.27 * delta_h -2.68 kcal * * #AgCl2- 424 * Ag+ + 2Cl- = AgCl2- * log_k 5.27 * delta_h -3.93 kcal * * #AgCl3-2 425 * Ag+ + 3Cl- = AgCl3-2 * log_k 5.29 * * #AgCl4-3 426 * Ag+ + 4Cl- = AgCl4-3 * log_k 5.51 * * #AgF 427 * Ag+ + F- = AgF * log_k 0.36 * delta_h -2.83 kcal * * #AgHS 428 * Ag+ + HS- = AgHS * log_k 14.05 * * #Ag(HS)2- 429 * Ag+ + 2HS- = Ag(HS)2- * log_k 18.45 * * #AgI 430 * Ag+ + I- = AgI * log_k 6.6 * * #AgI2- 431 * Ag+ + 2I- = AgI2- * log_k 10.68 * * #AgOH 432 * Ag+ + H2O = AgOH + H+ * log_k -12.0 * * #Ag(OH)2- 433 * Ag+ + 2H2O = Ag(OH)2- + 2H+ * log_k -24.0 * * #AgSO4- 434 * Ag+ + SO4-2 = AgSO4- * log_k 1.29 * delta_h 1.49 kcal * * #AgNO3 435 * Ag+ + NO3- = AgNO3 * log_k -0.29 * * #Ag(NO2)2- 436 * Ag+ + 2NO2- = Ag(NO2)2- * log_k 2.22 * * #ZnBr+ 447 * Zn+2 + Br- = ZnBr+ * log_k -0.58 * * #ZnBr2 448 * Zn+2 + 2Br- = ZnBr2 * log_k -0.98 * * #ZnI+ 449 * Zn+2 + I- = ZnI+ * log_k -2.91 * * #ZnI2 450 * Zn+2 + 2I- = ZnI2 * log_k -1.69 * * #CdBr+ 451 * Cd+2 + Br- = CdBr+ * log_k 2.17 * delta_h -0.81 kcal * * #CdBr2 452 * Cd+2 + 2Br- = CdBr2 * log_k 2.9 * * #CdI+ 453 * Cd+2 + I- = CdI+ * log_k 2.15 * delta_h -2.37 kcal * * #CdI2 454 * Cd+2 + 2I- = CdI2 * log_k 3.59 * * #PbBr+ 455 * Pb+2 + Br- = PbBr+ * log_k 1.77 * delta_h 2.88 kcal * * #PbBr2 456 * Pb+2 + 2Br- = PbBr2 * log_k 1.44 * * #PbI+ 457 * Pb+2 + I- = PbI+ * log_k 1.94 * * #PbI2 458 * Pb+2 + 2I- = PbI2 * log_k 3.2 * * #PbCO3 468 * Pb+2 + CO3-2 = PbCO3 * log_k 7.24 * * #Pb(OH)4-2 469 * Pb+2 + 4H2O = Pb(OH)4-2 + 4H+ * log_k -39.7 * * #Pb(SO4)2-2 470 * Pb+2 + 2SO4-2 = Pb(SO4)2-2 * log_k 3.47 * * #AgBr3-2 473 * Ag+ + 3Br- = AgBr3-2 * log_k 8.71 * * #AgI3-2 474 * Ag+ + 3I- = AgI3-2 * log_k 13.37 * delta_h -27.03 kcal * * #AgI4-3 475 * Ag+ + 4I- = AgI4-3 * log_k 14.08 * * #Fe(HS)2 476 * Fe+2 + 2HS- = Fe(HS)2 * log_k 8.95 * * #Fe(HS)3- 477 * Fe+2 + 3HS- = Fe(HS)3- * log_k 10.987 * * #H2AsO3- 478 * H3AsO3 = H2AsO3- + H+ * log_k -9.15 * delta_h 27.54 kJ * * #HAsO3-2 479 * H3AsO3 = HAsO3-2 + 2H+ * log_k -23.85 * delta_h 59.41 kJ * * #AsO3-3 480 * H3AsO3 = AsO3-3 + 3H+ * log_k -39.55 * delta_h 84.73 kJ * * #H4AsO3+ 481 * H3AsO3 + H+ = H4AsO3+ * log_k -0.305 * * #H2AsO4- 482 * H3AsO4 = H2AsO4- + H+ * log_k -2.3 * delta_h -7.066 kJ * * #HAsO4-2 483 * H3AsO4 = HAsO4-2 + 2H+ * log_k -9.46 * delta_h -3.846 kJ * * #AsO43- 484 * H3AsO4 = AsO4-3 + 3H+ * log_k -21.11 * delta_h 14.354 kJ * * #As3 secondary master species 487 * H3AsO4 + H2 = H3AsO3 + H2O * log_k 22.5 * delta_h -117.480344 kJ * * #As3S4(HS)-2 631 * 3H3AsO3 + 6HS- + 5H+ = As3S4(HS)2- + 9H2O * log_k 72.314 * * #AsS(OH)(HS)- 637 * H3AsO3 + 2HS- + H+ = AsS(OH)(HS)- + 2H2O * log_k 18.038 * * # * # TURNING OFF CHECKING FOR EQUATION BALANCE FOR * # POLYSULFIDES * # * * #Cu(S4)2-3 485 # Default redox will be used for the electron * # Cu+2 + 2HS- + e- = Cu(S4)2-3 + 2H+ # (lhs) +6S * # log_k 6.109 * # -no_check * # -mass_balance CuS(-2)8 * # -gamma 23.0 0.0 * * #CuS4S5-3 486 # Default redox will be used for the electron * # Cu+2 + 2HS- + e- = CuS4S5-3 + 2H+ # (lhs) +7S * # log_k 5.382 * # -no_check * # -mass_balance CuS(-2)9 * # -gamma 25.0 0.0 * * #As3/As5 487 * # H3AsO3 + H2O = H3AsO4 + 2H+ + 2e- * # log_k -18.897 * # delta_h 30.015 kcal * * #S2-2 502 * HS- = S2-2 + H+ # (lhs) +S * log_k -14.528 * delta_h 11.4 kcal * -no_check * -mass_balance S(-2)2 * -gamma 6.5 0.0 * * #S3-2 503 * HS- = S3-2 + H+ # (lhs) +2S * log_k -13.282 * delta_h 10.4 kcal * -no_check * -mass_balance S(-2)3 * -gamma 8.0 0.0 * * #S4-2 504 * HS- = S4-2 + H+ # (lhs) +3S * log_k -9.829 * delta_h 9.7 kcal * -no_check * -mass_balance S(-2)4 * -gamma 10.0 0.0 * * #S5-2 505 * HS- = S5-2 + H+ # (lhs) +4S * log_k -9.595 * delta_h 9.3 kcal * -no_check * -mass_balance S(-2)5 * -gamma 12.0 0.0 * * #S6-2 506 * HS- = S6-2 + H+ # (lhs) +5S * log_k -9.881 * -no_check * -mass_balance S(-2)6 * -gamma 14.0 0.0 * * #Ag(S4)2-3 507 * Ag+ + 2HS- = Ag(S4)2-3 + 2H+ # (lhs) +6S * log_k 0.991 * -no_check * -mass_balance AgS(-2)8 * -gamma 22.0 0.0 * * #Ag(S4)S5-3 508 * Ag+ + 2HS- = Ag(S4)S5-3 + 2H+ # (lhs) +7S * log_k 0.68 * -no_check * -mass_balance AgS(-2)9 * -gamma 24.0 0.0 * * #AgHS(S4)-2 509 # (lhs) +3S * Ag+ + 2HS- = AgHS(S4)-2 + H+ * log_k 10.43 * -no_check * -mass_balance AgHS(-2)5 * -gamma 15.0 0.0 * * # * # END OF POLYSULFIDES * # * * #CuHCO3+ 510 * Cu+2 + HCO3- = CuHCO3+ * log_k 2.7 * * #ZnHCO3+ 511 * Zn+2 + HCO3- = ZnHCO3+ * log_k 2.1 * * #ZnCO3 512 * Zn+2 + CO3-2 = ZnCO3 * log_k 5.3 * * #Zn(CO3)2-2 513 * Zn+2 + 2CO3-2 = Zn(CO3)2-2 * log_k 9.63 * * #CdHCO3 514 * Cd+2 + HCO3- = CdHCO3+ * log_k 1.5 * * #CdCO3 515 * Cd+2 + CO3-2 = CdCO3 * log_k 2.9 * * #Cd(SO4)2-2 516 * Cd+2 + 2SO4-2 = Cd(SO4)2-2 * log_k 3.5 * * #PbHCO3+ 517 * Pb+2 + HCO3- = PbHCO3+ * log_k 2.9 * * #NiCl2 518 * Ni+2 + 2Cl- = NiCl2 * log_k 0.96 * * #NiHCO3+ 519 * Ni+2 + HCO3- = NiHCO3+ * log_k 2.14 * * #NiCO3 520 * Ni+2 + CO3-2 = NiCO3 * log_k 6.87 * * #Ni(CO3)2-2 521 * Ni+2 + 2CO3-2 = Ni(CO3)2-2 * log_k 10.11 * * #Ni(SO4)2-2 522 * Ni+2 + 2SO4-2 = Ni(SO4)2-2 * log_k 1.02 * * #HFulvate 523 * H+ + Fulvate-2 = HFulvate- * log_k 4.27 * * #HHumate 524 * H+ + Humate-2 = HHumate- * log_k 4.27 * * #FeFulvate 525 * Fe+3 + Fulvate-2 = FeFulvate+ * log_k 9.4 * * #FeHumate 526 * Fe+3 + Humate-2 = FeHumate+ * log_k 9.4 * * #CuFulvate 527 * Cu+2 + Fulvate-2 = CuFulvate * log_k 6.2 * * #CuHumate 528 * Cu+2 + Humate-2 = CuHumate * log_k 6.2 * * #CdFulvate 529 * Cd+2 + Fulvate-2 = CdFulvate * log_k 3.5 * * #CdHumate 530 * Cd+2 + Humate-2 = CdHumate * log_k 3.5 * * #AgFulvate 531 * Ag+ + Fulvate-2 = AgFulvate- * log_k 2.4 * * #AgHumate 532 * Ag+ + Humate-2 = AgHumate- * log_k 2.4 * * #H2F2 537 * 2H+ + 2F- = H2F2 * log_k 6.768 * * #peS/H2S 538 * # S + 2H+ + 2e- = H2S * # 4.882 -9.5 * * #NaF 540 * Na+ + F- = NaF * log_k -0.24 * * #FeCl+ 542 * Fe+2 + Cl- = FeCl+ * log_k 0.14 * * #BaSO4 543 * Ba+2 + SO4-2 = BaSO4 * log_k 2.7 * * #HSe- secondary master species 549 * SeO3-2 + 7H+ + 6e- = HSe- + 3H2O * log_k 42.514 * * #H2Se 544 * HSe- + H+ = H2Se * log_k 3.8 * delta_h -5.3 kcal * * #SeO3-2 secondary master species 548 * SeO4-2 + 2H+ + 2e- = SeO3-2 + H2O * log_k 30.256 * * #H2SeO3 545 * SeO3-2 + 2H+ = H2SeO3 * log_k 11.25 * * #HSeO3- 546 * SeO3-2 + H+ = HSeO3- * log_k 8.5 * * #HSeO4- 547 * SeO4-2 + H+ = HSeO4- * log_k 1.66 * delta_h 4.91 kcal * * #Se4/Se6 548 * # SeO3-2 + H2O = SeO4-2 + 2H+ + 2e- * # -30.256 0.0 * * #Se4/Se-2 549 * # SeO3-2 + 7H+ + 6e- = HSe- + 3H2O * # 42.514 0.0 * * #As3/As 557 * # H3AsO3 + 3H+ + 3e- = As + 3H2O * # 12.170 0.0 * * #FeHCO3+ 558 * Fe+2 + HCO3- = FeHCO3+ * log_k 2.0 * * #FeCO3 559 * Fe+2 + CO3-2 = FeCO3 * log_k 4.38 * * #MnCO3 560 * Mn+2 + CO3-2 = MnCO3 * log_k 4.9 * * #BaHCO3+ 561 * Ba+2 + HCO3- = BaHCO3+ * log_k 0.982 * delta_h 5.56 kcal * -analytical -3.0938 0.013669 0.0 0.0 0.0 * * #BaCO3 562 * Ba+2 + CO3-2 = BaCO3 * log_k 2.71 * delta_h 3.55 kcal * -analytical 0.113 0.008721 0.0 0.0 0.0 * * #SrSO4 563 * Sr+2 + SO4-2 = SrSO4 * log_k 2.29 * delta_h 2.08 kcal * * #U+4 secondary master species 565 * UO2+2 + 4H+ + 2e- = U+4 + 2H2O * log_k 9.04 * delta_h -34.43 kcal * * #U+3 secondary master species 566 * U+4 + e- = U+3 * log_k -8.796 * delta_h 24.4 kcal * * #UOH+3 567 * U+4 + H2O = UOH+3 + H+ * log_k -0.54 * delta_h 11.21 kcal * * #U(OH)2+2 568 * U+4 + 2H2O = U(OH)2+2 + 2H+ * log_k -2.27 * delta_h 17.73 kcal * * #U(OH)3+ 569 * U+4 + 3H2O = U(OH)3+ + 3H+ * log_k -4.935 * delta_h 22.645 kcal * * #U(OH)4 570 * U+4 + 4H2O = U(OH)4 + 4H+ * log_k -8.498 * delta_h 24.76 kcal * * #U6(OH)15+9 572 * 6U+4 + 15H2O = U6(OH)15+9 + 15H+ * log_k -17.2 * * #UF+3 578 * U+4 + F- = UF+3 * log_k 9.3 * delta_h -1.3 kcal * * #UF2+2 579 * U+4 + 2F- = UF2+2 * log_k 16.22 * delta_h -0.8 kcal * * #UF3+ 580 * U+4 + 3F- = UF3+ * log_k 21.6 * delta_h 0.1 kcal * * #UF4 581 * U+4 + 4F- = UF4 * log_k 25.5 * delta_h -0.87 kcal * * #UF5- 582 * U+4 + 5F- = UF5- * log_k 27.01 * delta_h 4.85 kcal * * #UF6-2 583 * U+4 + 6F- = UF6-2 * log_k 29.1 * delta_h 3.3 kcal * * #UCl+3 586 * U+4 + Cl- = UCl+3 * log_k 1.72 * delta_h -4.54 kcal * * #USO4+2 587 * U+4 + SO4-2 = USO4+2 * log_k 6.58 * delta_h 1.9 kcal * * #U(SO4)2 588 * U+4 + 2SO4-2 = U(SO4)2 * log_k 10.5 * delta_h 7.8 kcal * * #U(CO3)4-4 589 * U+4 + 4CO3-2 = U(CO3)4-4 * log_k 32.9 * * #U(CO3)5-6 590 * U+4 + 5CO3-2 = U(CO3)5-6 * log_k 34.0 * delta_h 20.0 kcal * * #UO2+ secondary master species 595 * UO2+2 + e- = UO2+ * log_k 1.49 * delta_h -3.3 kcal * * #UO2OH+ 596 * UO2+2 + H2O = UO2OH+ + H+ * log_k -5.2 * delta_h 11.015 kcal * * #(UO2)2(OH)2+2 597 * 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ * log_k -5.62 * delta_h 10.23 kcal * * #(UO2)3(OH)5+ 598 * 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+ * log_k -15.55 * delta_h 25.075 kcal * * #UO2CO3 603 * UO2+2 + CO3-2 = UO2CO3 * log_k 9.63 * delta_h 1.2 kcal * * #UO2(CO3)2-2 604 * UO2+2 + 2CO3-2 = UO2(CO3)2-2 * log_k 17.0 * delta_h 4.42 kcal * * #UO2(CO3)3-4 605 * UO2+2 + 3CO3-2 = UO2(CO3)3-4 * log_k 21.63 * delta_h -9.13 kcal * * #UO2F+ 607 * UO2+2 + F- = UO2F+ * log_k 5.09 * delta_h 0.41 kcal * * #UO2F2 608 * UO2+2 + 2F- = UO2F2 * log_k 8.62 * delta_h 0.5 kcal * * #UO2F3- 609 * UO2+2 + 3F- = UO2F3- * log_k 10.9 * delta_h 0.56 kcal * * #UO2F4-2 610 * UO2+2 + 4F- = UO2F4-2 * log_k 11.7 * delta_h 0.07 kcal * * #UO2Cl+ 611 * UO2+2 + Cl- = UO2Cl+ * log_k 0.17 * delta_h 1.9 kcal * * #UO2SO4 612 * UO2+2 + SO4-2 = UO2SO4 * log_k 3.15 * delta_h 4.7 kcal * * #UO2(SO4)2-2 613 * UO2+2 + 2SO4-2 = UO2(SO4)2-2 * log_k 4.14 * delta_h 8.4 kcal * * #UO2HPO4 614 * UO2+2 + PO4-3 + H+ = UO2HPO4 * log_k 20.21 * delta_h -2.1 kcal * * #UO2(HPO4)2-2 615 * UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2 * log_k 43.441 * delta_h -11.8 kcal * * #UO2H2PO4+ 616 * UO2+2 + PO4-3 + 2H+ = UO2H2PO4+ * log_k 22.87 * delta_h -3.7 kcal * * #UO2H2PO4)2 617 * UO2+2 + 2PO4-3 + 4H+ = UO2(H2PO4)2 * log_k 44.38 * delta_h -16.5 kcal * * #UO2H2PO4)3- 618 * UO2+2 + 3PO4-3 + 6H+ = UO2(H2PO4)3- * log_k 66.245 * delta_h -28.6 kcal * * #UBr+3 633 * U+4 + Br- = UBr+3 * log_k 1.5 * * #UI+3 634 * U+4 + I- = UI+3 * log_k 1.3 * * #UNO3+3 635 * U+4 + NO3- = UNO3+3 * log_k 1.47 * * #U(NO3)2+2 636 * U+4 + 2NO3- = U(NO3)2+2 * log_k 2.3 * * #UO2(OH)3- 638 * UO2+2 + 3H2O = UO2(OH)3- + 3H+ * log_k -19.2 * * #UO2(OH)4-2 639 * UO2+2 + 4H2O = UO2(OH)4-2 + 4H+ * log_k -33.0 * * #(UO2)2OH+3 640 * 2UO2+2 + H2O = (UO2)2OH+3 + H+ * log_k -2.7 * * #(UO2)3(OH)4+2 641 * 3UO2+2 + 4H2O = (UO2)3(OH)4+2 + 4H+ * log_k -11.9 * * #(UO2)3(OH)7- 642 * 3UO2+2 + 7H2O = (UO2)3(OH)7- + 7H+ * log_k -31.0 * * #(UO2)4(OH)7+ 643 * 4UO2+2 + 7H2O = (UO2)4(OH)7+ + 7H+ * log_k -21.9 * * #UO2Cl2 644 * UO2+2 + 2Cl- = UO2Cl2 * log_k -1.1 * delta_h 3.6 kcal * * #UO2Br+ 645 * UO2+2 + Br- = UO2Br+ * log_k 0.22 * * #UO2NO3+ 646 * UO2+2 + NO3- = UO2NO3+ * log_k 0.3 * * #UO2H3PO4+2 647 * UO2+2 + PO4-3 + 3H+ = UO2H3PO4+2 * log_k 22.813 * * #(UO2)3(CO3)6-6 648 * 3UO2+2 + 6CO3-2 = (UO2)3(CO3)6-6 * log_k 54.0 * * #UO2PO4- 649 * UO2+2 + PO4-3 = UO2PO4- * log_k 13.69 * * #UO2(CO3)3-5 650 * # UO2+2 + 3CO3-2 + e- = UO2(CO3)3-5 * # log_k 8.920 * UO2+ + 3CO3-2 = UO2(CO3)3-5 * log_k 7.43 * delta_h 3.33 kcal * * PHASES * * H2O(g) * H2O = H2O * log_k 1.51 * delta_h -44.03 kJ * # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) * * Siderite(d)(3) 9 * FeCO3 = Fe+2 + CO3-2 * log_k -10.45 * * Magnesite 10 * MgCO3 = Mg+2 + CO3-2 * log_k -8.029 * delta_h -6.169 kcal * * Dolomite(d) 11 * CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 * log_k -16.54 * delta_h -11.09 kcal * * Calcite 12 * CaCO3 = Ca+2 + CO3-2 * log_k -8.48 * delta_h -2.297 kcal * -analytical -171.9065 -0.077993 2839.319 71.595 0.0 * * Anhydrite 17 * CaSO4 = Ca+2 + SO4-2 * log_k -4.36 * delta_h -1.71 kcal * -analytical 197.52 0.0 -8669.8 -69.835 0.0 * * Gypsum 18 * CaSO4:2H2O = Ca+2 + SO4-2 + 2H2O * log_k -4.58 * delta_h -0.109 kcal * -analytical 68.2401 0.0 -3221.51 -25.0627 0.0 * * Brucite 19 * Mg(OH)2 + 2H+ = Mg+2 + 2H2O * log_k 16.84 * delta_h -27.1 kcal * * Chrysotile 20 * Mg3Si2O5(OH)4 + 6H+ = 3Mg+2 + 2H4SiO4 + H2O * log_k 32.2 * delta_h -46.8 kcal * -analytical 13.248 0.0 10217.1 -6.1894 0.0 * * Aragonite 21 * CaCO3 = Ca+2 + CO3-2 * log_k -8.336 * delta_h -2.589 kcal * -analytical -171.9773 -0.077993 2903.293 71.595 0.0 * * Forsterite 27 * Mg2SiO4 + 4H+ = 2Mg+2 + H4SiO4 * log_k 28.306 * delta_h -48.578 kcal * * Diopside 28 * CaMgSi2O6 + 4H+ + 2H2O = Ca+2 + Mg+2 + 2H4SiO4 * log_k 19.894 * delta_h -32.348 kcal * * Clinoenstatite 29 * MgSiO3 + 2H+ + H2O = Mg+2 + H4SiO4 * log_k 11.342 * delta_h -20.049 kcal * * Tremolite 31 * Ca2Mg5Si8O22(OH)2+14H+ +8H2O = 2Ca+2 +5Mg+2 +8H4SiO4 * log_k 56.574 * delta_h -96.853 kcal * * Sepiolite 36 * Mg2Si3O7.5OH:3H2O+0.5H2O+4H+ = 2Mg+2 +3H4SiO4 * log_k 15.76 * delta_h -10.7 kcal * * Talc 37 * Mg3Si4O10(OH)2+4H2O+6H+=3Mg+2 +4H4SiO4 * log_k 21.399 * delta_h -46.352 kcal * * Hydromagnesite 38 * Mg5(CO3)4(OH)2:4H2O + 2H+ = 5Mg+2 + 4CO3-2 + 6H2O * log_k -8.762 * delta_h -52.244 kcal * * Adularia 39 * KAlSi3O8 + 8H2O = K+ + Al(OH)4- + 3H4SiO4 * log_k -20.573 * delta_h 30.82 kcal * * Albite 40 * NaAlSi3O8 + 8H2O = Na+ + Al(OH)4- + 3H4SiO4 * log_k -18.002 * delta_h 25.896 kcal * * Anorthite 41 * CaAl2Si2O8 + 8H2O = Ca+2 + 2Al(OH)4- + 2H4SiO4 * log_k -19.714 * delta_h 11.58 kcal * * Analcime 42 * NaAlSi2O6:H2O + 5H2O = Na+ + Al(OH)4- + 2H4SiO4 * log_k -12.701 * delta_h 18.206 kcal * * Kmica 43 * KAl3Si3O10(OH)2+10H+=K+ +3Al+3 +3H4SiO4 * log_k 12.703 * delta_h -59.376 kcal * * Phlogopite 44 * KMg3AlSi3O10(OH)2 + 10H+ = K+ + 3Mg+2 + Al+3 + 3H4SiO4 * log_k 43.3 * delta_h -42.30 kcal * * Illite 45 * K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ +0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ * log_k -40.267 * delta_h 54.684 kcal * * Kaolinite 46 * Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O * log_k 7.435 * delta_h -35.3 kcal * * Halloysite 47 * Al2Si2O5(OH)4 + 6H+ = 2Al+3 + 2H4SiO4 + H2O * log_k 12.498 * delta_h -39.920 kcal * * Beidellite 48 * (NaKMg0.5)0.11Al2.33Si3.67O10(OH)2 + 12H2O = 0.11Na+ + 0.11K+ + 0.055Mg+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ * log_k -45.272 * delta_h 60.355 kcal * * Chlorite14A 49 * Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O * log_k 68.38 * delta_h -151.494 kcal * * Alunite 50 * KAl3(SO4)2(OH)6 + 6H+ = K+ + 3Al+3 + 2SO4-2 + 6H2O * log_k -1.4 * delta_h -50.25 kcal * * Gibbsite 51 * Al(OH)3 + 3H+ = Al+3 + 3H2O * log_k 8.11 * delta_h -22.8 kcal * * Boehmite 52 * AlOOH + 3H+ = Al+3 + 2H2O * log_k 8.584 * delta_h -28.181 kcal * * Pyrophyllite 53 * Al2Si4O10(OH)2 + 12H2O = 2Al(OH)4- + 4H4SiO4 + 2H+ * log_k -48.314 * * Phillipsite 54 * Na0.5K0.5AlSi3O8:H2O + 7H2O = 0.5Na+ +0.5K+ + Al(OH)4- + 3H4SiO4 * log_k -19.874 * * Nahcolite 58 * NaHCO3 = Na+ + HCO3- * log_k -0.548 * delta_h 3.720 kcal * * Trona 59 * NaHCO3:Na2CO3:2H2O = 2H2O + 3Na+ + CO3-2 + HCO3- * log_k -0.795 * delta_h -18.0 kcal * * Natron 60 * Na2CO3:10H2O = 2Na+ + CO3-2 + 10H2O * log_k -1.311 * delta_h 15.745 kcal * * Thermonatrite 61 * Na2CO3:H2O = 2Na+ + CO3-2 + H2O * log_k 0.125 * delta_h -2.802 kcal * * Fluorite 62 * CaF2 = Ca+2 + 2F- * log_k -10.6 * delta_h 4.69 kcal * -analytical 66.348 0.0 -4298.2 -25.271 0.0 * * Montmorillonite-Ca 63 * Ca0.165Al2.33Si3.67O10(OH)2 + 12H2O = 0.165Ca+2 + 2.33Al(OH)4- + 3.67H4SiO4 + 2H+ * log_k -45.027 * delta_h 58.373 kcal * * Halite 64 * NaCl = Na+ + Cl- * log_k 1.582 * delta_h 0.918 kcal * * Thenardite 65 * Na2SO4 = 2Na+ + SO4-2 * log_k -0.179 * delta_h -0.572 kcal * * Mirabilite 66 * Na2SO4:10H2O = 2Na+ + SO4-2 + 10H2O * log_k -1.114 * delta_h 18.987 kcal * * Mackinawite 67 * FeS + H+ = Fe+2 + HS- * log_k -4.648 * * Siderite 94 * FeCO3 = Fe+2 + CO3-2 * log_k -10.89 * delta_h -2.48 kcal * * Hydroxyapatite 95 * Ca5(PO4)3OH + 4H+ = 5Ca+2 + 3HPO4-2 + H2O * log_k -3.421 * delta_h -36.155 kcal * * Fluorapatite 96 * Ca5(PO4)3F + 3H+ = 5Ca+2 + 3HPO4-2 + F- * log_k -17.6 * delta_h -20.070 kcal * * Chalcedony 97 * SiO2 + 2H2O = H4SiO4 * log_k -3.55 * delta_h 4.72 kcal * -analytical -0.09 0.0 -1032.0 0.0 0.0 * * Magadiite 98 * NaSi7O13(OH)3:3H2O + H+ + 9H2O = Na+ + 7H4SiO4 * log_k -14.3 * * Cristobalite 99 * SiO2 + 2H2O = H4SiO4 * log_k -3.587 * delta_h 5.5 kcal * * Silicagel 100 * SiO2 + 2H2O = H4SiO4 * log_k -3.018 * delta_h 4.440 kcal * * Quartz 101 * SiO2 + 2H2O = H4SiO4 * log_k -3.98 * delta_h 5.99 kcal * -analytical 0.41 0.0 -1309.0 0.0 0.0 * * Vivianite 106 * Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2O * log_k -36.0 * * Magnetite 107 * Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2O * log_k 3.737 * delta_h -50.460 kcal * * Hematite 108 * Fe2O3 + 6H+ = 2Fe+3 + 3H2O * log_k -4.008 * delta_h -30.845 kcal * * Maghemite 109 * Fe2O3 + 6H+ = 2Fe+3 + 3H2O * log_k 6.386 * * Goethite 110 * FeOOH + 3H+ = Fe+3 + 2H2O * log_k -1.0 * delta_h -14.48 kcal * * Greenalite 111 * Fe3Si2O5(OH)4 + 6H+ = 3Fe+2 + 2 H4SiO4 + H2O * log_k 20.810 * * Fe(OH)3(a) 112 * Fe(OH)3 + 3H+ = Fe+3 + 3H2O * log_k 4.891 * * Annite 113 * KFe3AlSi3O10(OH)2 + 10H2O = K+ + 3Fe+2 + Al(OH)4- + 3H4SiO4 + 6OH- * log_k -85.645 * delta_h 62.480 kcal * * Pyrite 114 * FeS2 + 2H+ + 2e- = Fe+2 + 2HS- * log_k -18.479 * delta_h 11.3 kcal * * Montmorillonite-BelleFourche 115 * (HNaK)0.09Mg0.29Fe0.24Al1.57Si3.93O10(OH)2 + 10H2O = 0.09H+ + 0.09Na+ + 0.09K+ + 0.29Mg+2 + 0.24Fe+3 + 1.57Al(OH)4- + 3.93H4SiO4 * log_k -34.913 * * Montmorillonite-Aberdeen 116 * (HNaK)0.14Mg0.45Fe0.33Al1.47Si3.82O10(OH)2 + 9.16H2O + 0.84H+ = 0.14H+ + 0.14Na+ + 0.14K+ + 0.45Mg+2 + 0.33Fe+3 + 1.47Al(OH)4- + 3.82H4SiO4 * log_k -29.688 * * Huntite 117 * CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2 * log_k -29.968 * delta_h -25.760 kcal * * Greigite 118 * Fe3S4 + 4H+ = 2Fe+3 + Fe+2 + 4HS- * log_k -45.035 * * FeS(ppt) 119 * FeS + H+ = Fe+2 + HS- * log_k -3.915 * * Chlorite7A 125 * Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 +3H4SiO4 + 6H2O * log_k 71.752 * delta_h -155.261 kcal * * Laumontite 128 * CaAl2Si4O12:4H2O + 8H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 * log_k -30.960 * delta_h 39.610 kcal * * Jarosite(ss) 133 * (K0.77Na0.03H0.2)Fe3(SO4)2(OH)6 + 5.8H+ = 0.77K+ + 0.03Na+ + 3Fe+3 + 2SO4-2 + 6H2O * log_k -9.83 # WATEQ4F, Alpers and others, 1989 * * * Mn2(SO4)3 134 * Mn2(SO4)3 = 2Mn+3 + 3SO4-2 * log_k -5.711 * delta_h -39.060 kcal * * Al(OH)3(a) 140 * Al(OH)3 + 3H+ = Al+3 + 3H2O * log_k 10.8 * delta_h -26.5 kcal * * Prehnite 141 * Ca2Al2Si3O10(OH)2 + 8H2O + 2H+ = 2Ca+2 + 2Al(OH)4- + 3H4SiO4 * log_k -11.695 * delta_h 10.390 kcal * * Strontianite 142 * SrCO3 = Sr+2 + CO3-2 * log_k -9.271 * delta_h -0.4 kcal * -analytical 155.0305 0.0 -7239.594 -56.58638 0.0 * * Celestite 143 * SrSO4 = Sr+2 + SO4-2 * log_k -6.63 * delta_h -1.037 kcal * -analytical -14805.9622 -2.4660924 756968.533 5436.3588 -40553604. * * Barite 144 * BaSO4 = Ba+2 + SO4-2 * log_k -9.97 * delta_h 6.35 kcal * -analytical 136.035 0.0 -7680.41 -48.595 0.0 * * Witherite 145 * BaCO3 = Ba+2 + CO3-2 * log_k -8.562 * delta_h 0.703 kcal * -analytical 607.642 0.121098 -20011.25 -236.4948 0.0 * * Strengite 146 * FePO4:2H2O = Fe+3 + PO4-3 + 2H2O * log_k -26.4 * delta_h -2.030 kcal * * Leonhardite 147 * Ca2Al4Si8O24:7H2O + 17H2O = 2Ca+2 + 4Al(OH)4- + 8H4SiO4 * log_k -69.756 * delta_h 90.070 kcal * * Nesquehonite 149 * MgCO3:3H2O = Mg+2 + CO3-2 + 3H2O * log_k -5.621 * delta_h -5.789 kcal * * Artinite 150 * MgCO3:Mg(OH)2:3H2O + 2H+ = 2Mg+2 + CO3-2 + 5H2O * log_k 9.6 * delta_h -28.742 kcal * * Sepiolite(d) 153 * Mg2Si3O7.5OH:3H2O+0.5H2O+4H+=2Mg+2 +3H4SiO4 * log_k 18.66 * * Diaspore 154 * AlOOH + 3H+ = Al+3 + 2H2O * log_k 6.879 * delta_h -24.681 kcal * * Wairakite 155 * CaAl2Si4O12:2H2O + 10H2O = Ca+2 + 2Al(OH)4- + 4H4SiO4 * log_k -26.708 * delta_h 26.140 kcal * * Fe(OH)2.7Cl.3 181 * Fe(OH)2.7Cl0.3 + 2.7H+ = Fe+3 + 2.7H2O + 0.3 Cl- * log_k -3.040 * * MnSO4 182 * MnSO4 = Mn+2 + SO4-2 * log_k 2.669 * delta_h -15.480 kcal * * Pyrolusite 183 * MnO2 + 4H+ + 2e- = Mn+2 + 2H2O * log_k 41.38 * delta_h -65.11 kcal * * Birnessite 184 * MnO2 + 4H+ + 2e- = Mn+2 + 2H2O * log_k 43.601 * * Nsutite 185 * MnO2 + 4H+ + 2e- = Mn+2 + 2H2O * log_k 42.564 * * Bixbyite 186 * Mn2O3 + 6H+ = 2Mn+3 + 3H2O * log_k -0.611 * delta_h -15.245 kcal * * Hausmannite 187 * Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2O * log_k 61.03 * delta_h -100.64 kcal * * Pyrochroite 188 * Mn(OH)2 + 2H+ = Mn+2 + 2H2O * log_k 15.2 * * Manganite 189 * MnOOH + 3H+ + e- = Mn+2 + 2H2O * log_k 25.340 * * Rhodochrosite(d) 190 * MnCO3 = Mn+2 + CO3-2 * log_k -10.390 * * MnCl2:4H2O 191 * MnCl2:4H2O = Mn+2 + 2Cl- + 4H2O * log_k 2.710 * delta_h 17.380 kcal * * MnS(Green) 192 * MnS + H+ = Mn+2 + HS- * log_k 3.8 * delta_h -5.790 kcal * * Mn3(PO4)2 193 * Mn3(PO4)2 = 3Mn+2 + 2PO4-3 * log_k -23.827 * delta_h 2.120 kcal * * MnHPO4 194 * MnHPO4 = Mn+2 + HPO4-2 * log_k -12.947 * * Jarosite-Na 204 * NaFe3(SO4)2(OH)6 + 6H+ = Na+ + 3Fe+3 + 2SO4-2 + 6H2O * log_k -5.280 * delta_h -36.180 kcal * * Jarosite-K 205 * KFe3(SO4)2(OH)6 + 6H+ = K+ + 3Fe+3 + 2SO4-2 + 6H2O * log_k -9.21 * delta_h -31.28 kcal * * CuMetal 223 * Cu = Cu+ + e- * log_k -8.760 * delta_h 17.130 kcal * * Nantokite 224 * CuCl = Cu+ + Cl- * log_k -6.760 * delta_h 9.980 kcal * * CuF 225 * CuF = Cu+ + F- * log_k 7.080 * delta_h -12.370 kcal * * Cuprite 226 * Cu2O + 2H+ = 2Cu+ + H2O * log_k -1.550 * delta_h 6.245 kcal * * Chalcocite 227 * Cu2S + H+ = 2Cu+ + HS- * log_k -34.619 * delta_h 49.350 kcal * * Cu2SO4 228 * Cu2SO4 = 2Cu+ + SO4-2 * log_k -1.950 * delta_h -4.560 kcal * * CuprousFerrite 229 * CuFeO2 + 4H+ = Cu+ + Fe+3 + 2H2O * log_k -8.920 * delta_h -3.8 kcal * * Melanothallite 230 * CuCl2 = Cu+2 + 2Cl- * log_k 3.730 * delta_h -12.320 kcal * * CuCO3 231 * CuCO3 = Cu+2 + CO3-2 * log_k -9.630 * * CuF2 232 * CuF2 = Cu+2 + 2F- * log_k -0.620 * delta_h -13.320 kcal * * CuF2:2H2O 233 * CuF2:2H2O = Cu+2 + 2F- + 2H2O * log_k -4.550 * delta_h -3.650 kcal * * Cu(OH)2 234 * Cu(OH)2 + 2H+ = Cu+2 + 2H2O * log_k 8.640 * delta_h -15.250 kcal * * Malachite 235 * Cu2(OH)2CO3 + 3H+ = 2Cu+2 + 2H2O + HCO3- * log_k 5.150 * delta_h -19.760 kcal * * Azurite 236 * Cu3(OH)2(CO3)2 + 4H+ = 3Cu+2 + 2H2O + 2HCO3- * log_k 3.750 * delta_h -30.870 kcal * * Atacamite 237 * Cu2(OH)3Cl + 3H+ = 2Cu+2 + 3H2O + Cl- * log_k 7.340 * delta_h -18.690 kcal * * Cu2(OH)3NO3 238 * Cu2(OH)3NO3 + 3H+ = 2Cu+2 + 3H2O + NO3- * log_k 9.240 * delta_h -17.350 kcal * * Antlerite 239 * Cu3(OH)4SO4 + 4H+ = 3Cu+2 + 4H2O + SO4-2 * log_k 8.290 * * Brochantite 240 * Cu4(OH)6SO4 + 6H+ = 4Cu+2 + 6H2O + SO4-2 * log_k 15.340 * * Langite 241 * Cu4(OH)6SO4:H2O + 6H+ = 4Cu+2 + 7H2O + SO4-2 * log_k 16.790 * delta_h -39.610 kcal * * Tenorite 242 * CuO + 2H+ = Cu+2 + H2O * log_k 7.620 * delta_h -15.240 kcal * * CuOCuSO4 243 * CuO:CuSO4 + 2H+ = 2Cu+2 + H2O + SO4-2 * log_k 11.530 * delta_h -35.575 kcal * * Cu3(PO4)2 244 * Cu3(PO4)2 = 3Cu+2 + 2PO4-3 * log_k -36.850 * * Cu3(PO4)2:3H2O 245 * Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2O * log_k -35.120 * * Covellite 246 * CuS + H+ = Cu+2 + HS- * log_k -22.270 * delta_h 24.010 kcal * * CuSO4 247 * CuSO4 = Cu+2 + SO4-2 * log_k 3.010 * delta_h -18.140 kcal * * Chalcanthite 248 * CuSO4:5H2O = Cu+2 + SO4-2 + 5H2O * log_k -2.640 * delta_h 1.440 kcal * * CupricFerrite 249 * CuFe2O4 + 8H+ = Cu+2 + 2Fe+3 + 4H2O * log_k 5.880 * delta_h -38.690 kcal * * Chalcopyrite 250 * CuFeS2 + 2H+ = Cu+2 + Fe+2 + 2HS- * log_k -35.270 * delta_h 35.480 kcal * * ZnMetal 265 * Zn = Zn+2 + 2e- * log_k 25.757 * delta_h -36.780 kcal * * Zn(BO2)2 266 * Zn(BO2)2 + 2H2O + 2H+ = Zn+2 + 2H3BO3 * log_k 8.290 * * ZnCl2 267 * ZnCl2 = Zn+2 + 2Cl- * log_k 7.030 * delta_h -17.480 kcal * * Smithsonite 268 * ZnCO3 = Zn+2 + CO3-2 * log_k -10.0 * delta_h -4.36 kcal * * ZnCO3:H2O 269 * ZnCO3:H2O = Zn+2 + CO3-2 + H2O * log_k -10.260 * * ZnF2 270 * ZnF2 = Zn+2 + 2F- * log_k -1.520 * delta_h -13.080 kcal * * Zn(OH)2-a 271 * Zn(OH)2 + 2H+ = Zn+2 + 2H2O * log_k 12.450 * * Zn(OH)2-c 272 * Zn(OH)2 + 2H+ = Zn+2 + 2H2O * log_k 12.2 * * Zn(OH)2-b 273 * Zn(OH)2 + 2H+ = Zn+2 + 2H2O * log_k 11.750 * * Zn(OH)2-g 274 * Zn(OH)2 + 2H+ = Zn+2 + 2H2O * log_k 11.710 * * Zn(OH)2-e 275 * Zn(OH)2 + 2H+ = Zn+2 + 2H2O * log_k 11.5 * * Zn2(OH)3Cl 276 * Zn2(OH)3Cl + 3H+= 2Zn+2 + 3H2O + Cl- * log_k 15.2 * * Zn5(OH)8Cl2 277 * Zn5(OH)8Cl2 + 8H+ = 5Zn+2 + 8H2O + 2Cl- * log_k 38.5 * * Zn2(OH)2SO4 278 * Zn2(OH)2SO4 + 2H+ = 2Zn+2 + 2H2O + SO4-2 * log_k 7.5 * * Zn4(OH)6SO4 279 * Zn4(OH)6SO4 + 6H+ = 4Zn+2 + 6H2O + SO4-2 * log_k 28.4 * * Zn(NO3)2:6H2O 280 * Zn(NO3)2:6H2O = Zn+2 + 2NO3- + 6H2O * log_k 3.440 * delta_h 5.510 kcal * * ZnO(a) 281 * ZnO + 2H+ = Zn+2 + H2O * log_k 11.310 * * Zincite(c) 282 * ZnO + 2H+ = Zn+2 + H2O * log_k 11.140 * delta_h -21.860 kcal * * Zn3O(SO4)2 283 * ZnO:2ZnSO4 + 2H+ = 3Zn+2 + 2SO4-2 + H2O * log_k 19.020 * delta_h -62.0 kcal * * Zn3(PO4)2:4w 284 * Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2O * log_k -32.040 * * ZnS(a) 285 * ZnS + H+ = Zn+2 + HS- * log_k -9.052 * delta_h 3.670 kcal * * Sphalerite 286 * ZnS + H+ = Zn+2 + HS- * log_k -11.618 * delta_h 8.25 kcal * * Wurtzite 287 * ZnS + H+ = Zn+2 + HS- * log_k -9.682 * delta_h 5.060 kcal * * ZnSiO3 288 * ZnSiO3 + 2H+ + H2O = Zn+2 + H4SiO4 * log_k 2.930 * delta_h -18.270 kcal * * Willemite 289 * Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 * log_k 15.33 * delta_h -33.37 kcal * * Zincosite 290 * ZnSO4 = Zn+2 + SO4-2 * log_k 3.010 * delta_h -19.2 kcal * * ZnSO4:H2O 291 * ZnSO4:H2O = Zn+2 + SO4-2 + H2O * log_k -0.570 * delta_h -10.640 kcal * * Bianchite 292 * ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2O * log_k -1.765 * delta_h -0.160 kcal * * Goslarite 293 * ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2O * log_k -1.960 * delta_h 3.3 kcal * * CdMetal 312 * Cd = Cd+2 + 2e- * log_k 13.490 * delta_h -18.0 kcal * * Cd(gamma) 313 * Cd = Cd+2 + 2e- * log_k 13.590 * delta_h -18.140 kcal * * Cd(BO2)2 314 * Cd(BO2)2 + 2H2O + 2H+ = Cd+2 + 2H3BO3 * log_k 9.840 * * Otavite 315 * CdCO3 = Cd+2 + CO3-2 * log_k -12.1 * delta_h -0.019 kcal * * CdCl2 316 * CdCl2 = Cd+2 + 2Cl- * log_k -0.68 * delta_h -4.47 kcal * * CdCl2:H2O 317 * CdCl2:H2O = Cd+2 + 2Cl- + H2O * log_k -1.71 * delta_h -1.82 kcal * * CdCl2:2.5H2O 318 * CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2O * log_k -1.940 * delta_h 1.710 kcal * * CdF2 319 * CdF2 = Cd+2 + 2F- * log_k -2.980 * delta_h -9.720 kcal * * Cd(OH)2(a) 320 * Cd(OH)2 + 2H+ = Cd+2 + 2H2O * log_k 13.730 * delta_h -20.770 kcal * * Cd(OH)2 321 * Cd(OH)2 + 2H+ = Cd+2 + 2H2O * log_k 13.65 * * CdOHCl 322 * CdOHCl + H+ = Cd+2 + H2O + Cl- * log_k 3.520 * delta_h -7.407 kcal * * Cd3(OH)4SO4 323 * Cd3(OH)4SO4 + 4H+ = 3Cd+2 + 4H2O + SO4-2 * log_k 22.560 * * Cd3(OH)2(SO4)2 324 * Cd3(OH)2(SO4)2 + 2H+ = 3Cd+2 + 2H2O + 2SO4-2 * log_k 6.710 * * Cd4(OH)6SO4 325 * Cd4(OH)6SO4 + 6H+ = 4Cd+2 + 6H2O + SO4-2 * log_k 28.4 * * Monteponite 326 * CdO + 2H+ = Cd+2 + H2O * log_k 13.770 * delta_h -24.760 kcal * * Cd3(PO4)2 327 * Cd3(PO4)2 = 3Cd+2 + 2PO4-3 * log_k -32.6 * * CdSiO3 328 * CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 * log_k 9.06 * delta_h -16.63 kcal * * CdSO4 329 * CdSO4 = Cd+2 + SO4-2 * log_k -0.1 * delta_h -14.74 kcal * * CdSO4:H2O 330 * CdSO4:H2O = Cd+2 + SO4-2 + H2O * log_k -1.657 * delta_h -7.520 kcal * * CdSO4:2.7H2O 331 * CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2O * log_k -1.873 * delta_h -4.3 kcal * * Greenockite 332 * CdS + H+ = Cd+2 + HS- * log_k -15.930 * delta_h 16.360 kcal * * JarositeH 337 * (H3O)Fe3(SO4)2(OH)6 + 5H+ = 3Fe+3 + 2SO4-2 + 7H2O * log_k -5.390 * delta_h -55.150 kcal * * AlumK 338 * KAl(SO4)2:12H2O = K+ + Al+3 + 2SO4-2 + 12H2O * log_k -5.170 * delta_h 7.220 kcal * * Melanterite 339 * FeSO4:7H2O = Fe+2 + SO4-2 + 7H2O * log_k -2.209 * delta_h 4.91 kcal * -analytical 1.447 -0.004153 0.0 0.0 -214949.0 * * Epsomite 340 * MgSO4:7H2O = Mg+2 + SO4-2 + 7H2O * log_k -2.140 * delta_h 2.820 kcal * * PbMetal 360 * Pb = Pb+2 + 2e- * log_k 4.270 * delta_h 0.4 kcal * * Pb(BO2)2 361 * Pb(BO2)2 + 2H2O + 2H+ = Pb+2 + 2H3BO3 * log_k 7.610 * delta_h -5.8 kcal * * Cotunnite 362 * PbCl2 = Pb+2 + 2Cl- * log_k -4.770 * delta_h 5.6 kcal * * Matlockite 363 * PbClF = Pb+2 + Cl- + F- * log_k -9.430 * delta_h 7.950 kcal * * Phosgenite 364 * PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2 * log_k -19.810 * * Cerrusite 365 * PbCO3 = Pb+2 + CO3-2 * log_k -13.13 * delta_h 4.86 kcal * * PbF2 366 * PbF2 = Pb+2 + 2F- * log_k -7.440 * delta_h -0.7 kcal * * Massicot 367 * PbO + 2H+ = Pb+2 + H2O * log_k 12.910 * delta_h -16.780 kcal * * Litharge 368 * PbO + 2H+ = Pb+2 + H2O * log_k 12.720 * delta_h -16.380 kcal * * PbO:0.3H2O 369 * PbO:0.33H2O + 2H+ = Pb+2 + 1.33H2O * log_k 12.980 * * Pb2OCO3 370 * PbO:PbCO3 + 2H+ = 2Pb+2 + CO3-2 + H2O * log_k -0.5 * delta_h -11.460 kcal * * Larnakite 371 * PbO:PbSO4 + 2H+ = 2Pb+2 + SO4-2 + H2O * log_k -0.280 * delta_h -6.440 kcal * * Pb3O2SO4 372 * PbSO4:2PbO + 4H+ = 3Pb+2 + SO4-2 + 2H2O * log_k 10.4 * delta_h -20.750 kcal * * Pb4O3SO4 373 * PbSO4:3PbO + 6H+ = 4Pb+2 + SO4-2 + 3H2O * log_k 22.1 * delta_h -35.070 kcal * * PbHPO4 374 * PbHPO4 = Pb+2 + HPO4-2 * log_k -11.460 * delta_h 7.040 kcal * * Pb3(PO4)2 375 * Pb3(PO4)2 + 2H+ = 3Pb+2 + 2HPO4-2 * log_k -19.670 * delta_h -1.670 kcal * * Clpyromorphite 376 * Pb5(PO4)3Cl = 5Pb+2 + 3PO4-3 + Cl- * log_k -84.430 * * Hxypyromorphite 377 * Pb5(PO4)3OH + H+ = 5Pb+2 + 3PO4-3 + H2O * log_k -62.790 * * Pb3O2CO3 378 * PbCO3:2PbO + 4H+ = 3Pb+2 + CO3-2 + 2H2O * log_k 11.020 * delta_h -26.430 kcal * * Plumbogummite 379 * PbAl3(PO4)2(OH)5:H2O + 5H+ = Pb+2 + 3Al+3 + 2PO4-3 + 6H2O * log_k -32.790 * * Hinsdalite 380 * PbAl3PO4SO4(OH)6 + 6H+ = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2O * log_k -2.5 * * Tsumebite 381 * Pb2CuPO4(OH)3:3H2O + 3H+ = 2Pb+2 + Cu+2 + PO4-3 + 6H2O * log_k -9.790 * * PbSiO3 382 * PbSiO3 + H2O + 2H+ = Pb+2 + H4SiO4 * log_k 7.320 * delta_h -9.260 kcal * * Pb2SiO4 383 * Pb2SiO4 + 4H+ = 2Pb+2 + H4SiO4 * log_k 19.760 * delta_h -26.0 kcal * * Anglesite 384 * PbSO4 = Pb+2 + SO4-2 * log_k -7.79 * delta_h 2.15 kcal * * Galena 385 * PbS + H+ = Pb+2 + HS- * log_k -12.780 * delta_h 19.4 kcal * * Plattnerite 386 * PbO2 + 4H+ + 2e- = Pb+2 + 2H2O * log_k 49.3 * delta_h -70.730 kcal * * Pb2O3 387 * Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2O * log_k 61.040 * * Minium 388 * Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2O * log_k 73.690 * delta_h -102.760 kcal * * Pb(OH)2 389 * Pb(OH)2 + 2H+ = Pb+2 + 2H2O * log_k 8.15 * delta_h -13.99 kcal * * Laurionite 390 * PbOHCl + H+ = Pb+2 + Cl- + H2O * log_k 0.623 * * Pb2(OH)3Cl 391 * Pb2(OH)3Cl + 3H+ = 2Pb+2 + 3H2O + Cl- * log_k 8.793 * * Hydrocerrusite 392 * Pb(OH)2:2PbCO3 + 2H+ = 3Pb+2 + 2CO3-2 + 2H2O * log_k -17.460 * * Pb2O(OH)2 393 * PbO:Pb(OH)2 + 4H+ = 2Pb+2 + 3H2O * log_k 26.2 * * Pb4(OH)6SO4 394 * Pb4(OH)6SO4 + 6H+ = 4Pb+2 + SO4-2 + 6H2O * log_k 21.1 * * SiO2(a) 395 * SiO2 + 2H2O = H4SiO4 * log_k -2.71 * delta_h 3.34 kcal * -analytical -0.26 0.0 -731.0 0.0 0.0 * * FCO3Apatite 396 * Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48F- * log_k -114.4 * delta_h 39.390 kcal * * BaF2 398 * BaF2 = Ba+2 + 2F- * log_k -5.760 * delta_h 1.0 kcal * * SrF2 399 * SrF2 = Sr+2 + 2F- * log_k -8.540 * delta_h 1.250 kcal * * Dolomite 401 * CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2 * log_k -17.09 * delta_h -9.436 kcal * * Sulfur 402 * S + 2e- = S-2 * log_k -15.026 * delta_h 7.9 kcal * * NiCO3 410 * NiCO3 = Ni+2 + CO3-2 * log_k -6.840 * delta_h -9.940 kcal * * Ni(OH)2 411 * Ni(OH)2 + 2H+ = Ni+2 + 2H2O * log_k 10.8 * delta_h 30.450 kcal * * Ni4(OH)6SO4 412 * Ni4(OH)6SO4 + 6H+ = 4Ni+2 + SO4-2 + 6H2O * log_k 32.0 * * Bunsenite 413 * NiO + 2H+ = Ni+2 + H2O * log_k 12.450 * delta_h -23.920 kcal * * Ni3(PO4)2 414 * Ni3(PO4)2 = 3Ni+2 + 2PO4-3 * log_k -31.3 * * Millerite 415 * NiS + H+ = Ni+2 + HS- * log_k -8.042 * delta_h 2.5 kcal * * Retgersite 416 * NiSO4:6H2O = Ni+2 + SO4-2 + 6H2O * log_k -2.040 * delta_h 1.1 kcal * * Morenosite 417 * NiSO4:7H2O = Ni+2 + SO4-2 + 7H2O * log_k -2.360 * delta_h 2.940 kcal * * Ni2SiO4 418 * Ni2SiO4 + 4H+ = 2Ni+2 + H4SiO4 * log_k 14.540 * delta_h -33.360 kcal * * Fe3(OH)8 419 * Fe3(OH)8 + 8H+ = 2Fe+3 + Fe+2 + 8H2O * log_k 20.222 * * Dioptase 420 * CuSiO3:H2O + 2H+ = Cu+2 + H4SiO4 * log_k 6.5 * delta_h -8.960 kcal * * AgMetal 437 * Ag = Ag+ + e- * log_k -13.510 * delta_h 25.234 kcal * * Bromyrite 438 * AgBr = Ag+ + Br- * log_k -12.270 * delta_h 20.170 kcal * * Cerargyrite 439 * AgCl = Ag+ + Cl- * log_k -9.750 * delta_h 15.652 kcal * * Ag2CO3 440 * Ag2CO3 = 2Ag+ + CO3-2 * log_k -11.070 * delta_h 9.530 kcal * * AgF:4H2O 441 * AgF:4H2O = Ag+ + F- + 4H2O * log_k 0.550 * delta_h 4.270 kcal * * Iodyrite 442 * AgI = Ag+ + I- * log_k -16.070 * delta_h 26.820 kcal * * Ag2O 443 * Ag2O + 2H+ = 2Ag+ + H2O * log_k 12.580 * delta_h -10.430 kcal * * Ag3PO4 444 * Ag3PO4 = 3Ag+ + PO4-3 * log_k -17.550 * * Acanthite 445 * Ag2S + H+ = 2Ag+ + HS- * log_k -36.050 * delta_h 53.3 kcal * * Ag2SO4 446 * Ag2SO4 = 2Ag+ + SO4-2 * log_k -4.920 * delta_h 4.250 kcal * * CuBr 459 * CuBr = Cu+ + Br- * log_k -8.210 * delta_h 13.080 kcal * * CuI 460 * CuI = Cu+ + I- * log_k -11.890 * delta_h 20.140 kcal * * ZnBr2:2H2O 461 * ZnBr2:2H2O = Zn+2 + 2Br- + 2H2O * log_k 5.210 * delta_h -7.510 kcal * * ZnI2 462 * ZnI2 = Zn+2 + 2I- * log_k 7.230 * delta_h -13.440 kcal * * CdBr2:4H2O 463 * CdBr2:4H2O = Cd+2 + 2Br- + 4H2O * log_k -2.420 * delta_h 7.230 kcal * * CdI2 464 * CdI2 = Cd+2 + 2I- * log_k -3.610 * delta_h 4.080 kcal * * PbBr2 465 * PbBr2 = Pb+2 + 2Br- * log_k -5.180 * delta_h 8.1 kcal * * PbBrF 466 * PbBrF = Pb+2 + Br- + F- * log_k -8.490 * * PbI2 467 * PbI2 = Pb+2 + 2I- * log_k -8.070 * delta_h 15.160 kcal * * Jurbanite 471 * AlOHSO4 + H+ = Al+3 + SO4-2 + H2O * log_k -3.230 * * Basaluminite 472 * Al4(OH)10SO4 + 10H+ = 4Al+3 + SO4-2 + 10H2O * log_k 22.7 * * As2O5 488 * As2O5 + 3H2O = 2H3AsO4 * log_k 6.699 * delta_h -5.405 kcal * * AlAsO4:2H2O 489 * AlAsO4:2H2O = Al+3 + AsO4-3 + 2H2O * log_k -15.837 * * Ca3(AsO4)2:4w 490 * Ca3(AsO4)2:4H2O = 3Ca+2 + 2AsO4-3 + 4H2O * log_k -18.905 * * Cu3(AsO4)2:6w 491 * Cu3(AsO4)2:6H2O = 3Cu+2 + 2AsO4-3 + 6H2O * log_k -35.123 * * Scorodite 492 * FeAsO4:2H2O = Fe+3 + AsO4-3 + 2H2O * log_k -20.249 * * Mn3(AsO4):8H2O 493 * Mn3(AsO4)2:8H2O = 3Mn+2 + 2AsO4-3 + 8H2O * log_k -28.707 * * Ni3(AsO4)2:8H2O 494 * Ni3(AsO4)2:8H2O = 3Ni+2 + 2AsO4-3 + 8H2O * log_k -25.511 * * Pb3(AsO4)2 495 * Pb3(AsO4)2 = 3Pb+2 + 2AsO4-3 * log_k -35.403 * * Zn3(AsO4)2:2.5w 496 * Zn3(AsO4)2:2.5H2O = 3Zn+2 + 2AsO4-3 + 2.5H2O * log_k -27.546 * * Arsenolite 497 * # As4O6 + 6H2O = 4H3AsO3 * # log_k -2.801 * # delta_h 14.330 kcal * As2O3 + 3H2O = 2H3AsO3 * log_k -1.38 * delta_h 30.041 kJ * * Claudetite 498 * # As4O6 + 6H2O = 4H3AsO3 * # log_k -3.065 * # delta_h 13.290 kcal * As2O3 + 3H2O = 2H3AsO3 * log_k -1.34 * delta_h 28.443 kJ * * AsI3 499 * AsI3 + 3H2O = H3AsO3 + 3I- + 3H+ * log_k 4.155 * delta_h 1.875 kcal * * Orpiment 500 * As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ * # log_k -60.971 * # delta_h 82.890 kcal * log_k -46.3 * delta_h 263.1 kJ * * As2S3(am) 132 * As2S3 + 6H2O = 2H3AsO3 + 3HS- + 3H+ * log_k -44.9 * delta_h 244.2 kJ * * Realgar 501 * AsS + 3H2O = H3AsO3 + HS- + 2H+ + e- * # log_k -19.747 * # delta_h 30.545 kcal * log_k -19.944 * delta_h 129.2625 kJ * * BlaubleiI 533 * Cu0.9Cu0.2S + H+ = 0.9Cu+2 + 0.2Cu+ + HS- * log_k -24.162 * * BlaubleiII 534 * Cu0.6Cu0.8S + H+ = 0.6Cu+2 + 0.8Cu+ + HS- * log_k -27.279 * * Anilite 535 * Cu0.25Cu1.5S + H+ = 0.25Cu+2 + 1.5Cu+ + HS- * log_k -31.878 * delta_h 43.535 kcal * * Djurleite 536 * Cu0.066Cu1.868S + H+ = 0.066Cu+2 + 1.868Cu+ + HS- * log_k -33.920 * delta_h 47.881 kcal * * Portlandite 539 * Ca(OH)2 + 2H+ = Ca+2 + 2H2O * log_k 22.8 * delta_h -31.0 kcal * * Ba3(AsO4)2 541 * Ba3(AsO4)2 = 3Ba+2 + 2AsO4-3 * log_k -50.110 * delta_h 9.5 kcal * * Se(s) 550 * Se + H+ + 2e- = HSe- * log_k -17.322 * * #SemetalSe4 551 * # Se + 3H2O = SeO3-2 + 6H+ + 4e- * # log_k -59.836 * * FeSe2 552 * FeSe2 + 2H+ + 2e- = Fe+2 + 2HSe- * log_k -18.580 * * SeO2 553 * SeO2 + H2O = SeO3-2 + 2H+ * log_k -8.380 * * CaSeO3 554 * CaSeO3 = Ca+2 + SeO3-2 * log_k -5.6 * * BaSeO3 555 * BaSeO3 = Ba+2 + SeO3-2 * log_k -6.390 * * Fe2(SeO3)3 556 * Fe2(SeO3)3 = 2Fe+3 + 3SeO3-2 * log_k -35.430 * * Rhodochrosite 564 * MnCO3 = Mn+2 + CO3-2 * log_k -11.13 * delta_h -1.43 kcal * * Na4UO2(CO3)3 571 * Na4UO2(CO3)3 = 4Na+ + UO2+2 + 3CO3-2 * log_k -16.290 * * Uraninite(c) 573 * UO2 + 4H+ = U+4 + 2H2O * log_k -4.8 * delta_h -18.610 kcal * * UO2(a) 574 * UO2 + 4H+ = U+4 + 2H2O * log_k 0.1 * * U4O9(c) 575 * U4O9 + 18H+ + 2e- = 4U+4 + 9H2O * log_k -3.384 * delta_h -101.235 kcal * * U3O8(c) 576 * U3O8 + 16H+ + 4e- = 3U+4 + 8H2O * log_k 20.530 * delta_h -116.0 kcal * * Coffinite 577 * USiO4 + 4H+ = U+4 + H4SiO4 * log_k -7.670 * delta_h -11.6 kcal * * UF4(c) 584 * UF4 = U+4 + 4F- * log_k -18.606 * delta_h -18.9 kcal * * UF4:2.5H2O 585 * UF4:2.5H2O = U+4 + 4F- + 2.5H2O * log_k -27.570 * delta_h -0.588 kcal * * U(OH)2SO4 591 * U(OH)2SO4 + 2H+ = U+4 + SO4-2 + 2H2O * log_k -3.2 * * UO2HPO4:4H2O 592 * UO2HPO4:4H2O = UO2+2 + HPO4-2 + 4H2O * log_k -11.850 * * U(HPO4)2:4H2O 593 * U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2O * log_k -55.3 * delta_h 3.840 kcal * * Ningyoite 594 * CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2O * log_k -53.906 * delta_h -2.270 kcal * * UO3(gamma) 599 * UO3 + 2H+ = UO2+2 + H2O * log_k 7.719 * delta_h -19.315 kcal * * Gummite 600 * UO3 + 2H+ = UO2+2 + H2O * log_k 10.403 * delta_h -23.015 kcal * * B-UO2(OH)2 601 * UO2(OH)2 + 2H+ = UO2+2 + 2H2O * log_k 5.544 * delta_h -13.730 kcal * * Schoepite 602 * UO2(OH)2:H2O + 2H+ = UO2+2 + 3H2O * log_k 5.404 * delta_h -12.045 kcal * * Rutherfordine 606 * UO2CO3 = UO2+2 + CO3-2 * log_k -14.450 * delta_h -1.440 kcal * * (UO2)3(PO4)2:4w 619 * (UO2)3(PO4)2:4H2O = 3UO2+2 + 2PO4-3 + 4H2O * log_k -37.4 * delta_h 41.5 kcal * * H-Autunite 620 * H2(UO2)2(PO4)2 = 2H+ + 2UO2+2 + 2PO4-3 * log_k -47.931 * delta_h -3.6 kcal * * Na-Autunite 621 * Na2(UO2)2(PO4)2 = 2Na+ + 2UO2+2 + 2PO4-3 * log_k -47.409 * delta_h -0.460 kcal * * K-Autunite 622 * K2(UO2)2(PO4)2 = 2K+ + 2UO2+2 + 2PO4-3 * log_k -48.244 * delta_h 5.860 kcal * * Uramphite 623 * (NH4)2(UO2)2(PO4)2 = 2NH4+ + 2UO2+2 + 2PO4-3 * log_k -51.749 * delta_h 9.7 kcal * * Saleeite 624 * Mg(UO2)2(PO4)2 = Mg+2 + 2UO2+2 + 2PO4-3 * log_k -43.646 * delta_h -20.180 kcal * * Autunite 625 * Ca(UO2)2(PO4)2 = Ca+2 + 2UO2+2 + 2PO4-3 * log_k -43.927 * delta_h -14.340 kcal * * Sr-Autunite 626 * Sr(UO2)2(PO4)2 = Sr+2 + 2UO2+2 + 2PO4-3 * log_k -44.457 * delta_h -13.050 kcal * * Uranocircite 627 * Ba(UO2)2(PO4)2 = Ba+2 + 2UO2+2 + 2PO4-3 * log_k -44.631 * delta_h -10.1 kcal * * Bassetite 628 * Fe(UO2)2(PO4)2 = Fe+2 + 2UO2+2 + 2PO4-3 * log_k -44.485 * delta_h -19.9 kcal * * Torbernite 629 * Cu(UO2)2(PO4)2 = Cu+2 + 2UO2+2 + 2PO4-3 * log_k -45.279 * delta_h -15.9 kcal * * Przhevalskite 630 * Pb(UO2)2(PO4)2 = Pb+2 + 2UO2+2 + 2PO4-3 * log_k -44.365 * delta_h -11.0 kcal * * Uranophane 632 * Ca(UO2)2(SiO3OH)2 + 6H+ = Ca+2 + 2UO2+2 + 2H4SiO4 * log_k 17.489 * * CO2(g) * CO2 = CO2 * log_k -1.468 * delta_h -4.776 kcal * -analytical 108.3865 0.01985076 -6919.53 -40.45154 669365.0 * * O2(g) * O2 = O2 * log_k -2.960 * delta_h -1.844 kcal * * H2(g) * H2 = H2 * log_k -3.150 * delta_h -1.759 kcal * * N2(g) * N2 = N2 * log_k -3.260 * delta_h -1.358 kcal * * H2S(g) * H2S = H2S * log_k -0.997 * delta_h -4.570 kcal * * CH4(g) * CH4 = CH4 * log_k -2.860 * delta_h -3.373 kcal * * NH3(g) * NH3 = NH3 * log_k 1.770 * delta_h -8.170 kcal * * EXCHANGE_MASTER_SPECIES * X X- * * EXCHANGE_SPECIES * X- = X- * log_k 0.0 * * Na+ + X- = NaX * log_k 0.0 * * K+ + X- = KX * log_k 0.7 * * Li+ + X- = LiX * log_k -0.08 * * H+ + X- = HX * log_k 1.0 * * NH4+ + X- = NH4X * log_k 0.6 * * Ca+2 + 2X- = CaX2 * log_k 0.8 * * Mg+2 + 2X- = MgX2 * log_k 0.6 * * Sr+2 + 2X- = SrX2 * log_k 0.91 * * Ba+2 + 2X- = BaX2 * log_k 0.91 * * Mn+2 + 2X- = MnX2 * log_k 0.52 * * Fe+2 + 2X- = FeX2 * log_k 0.44 * * Cu+2 + 2X- = CuX2 * log_k 0.6 * * Zn+2 + 2X- = ZnX2 * log_k 0.8 * * Cd+2 + 2X- = CdX2 * log_k 0.8 * * Pb+2 + 2X- = PbX2 * log_k 1.05 * * Al+3 + 3X- = AlX3 * log_k 0.67 * * SURFACE_MASTER_SPECIES * Hfo_s Hfo_sOH * Hfo_w Hfo_wOH * SURFACE_SPECIES * # All surface data from * # Dzombak and Morel, 1990 * # * # * # Acid-base data from table 5.7 * # * # strong binding site--Hfo_s, * * Hfo_sOH = Hfo_sOH * log_k 0.0 * * Hfo_sOH + H+ = Hfo_sOH2+ * log_k 7.29 # = pKa1,int * * Hfo_sOH = Hfo_sO- + H+ * log_k -8.93 # = -pKa2,int * * # weak binding site--Hfo_w * * Hfo_wOH = Hfo_wOH * log_k 0.0 * * Hfo_wOH + H+ = Hfo_wOH2+ * log_k 7.29 # = pKa1,int * * Hfo_wOH = Hfo_wO- + H+ * log_k -8.93 # = -pKa2,int * * ############################################### * # CATIONS # * ############################################### * # * # Cations from table 10.1 or 10.5 * # * # Calcium * Hfo_sOH + Ca+2 = Hfo_sOHCa+2 * log_k 4.97 * * Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ * log_k -5.85 * # Strontium * Hfo_sOH + Sr+2 = Hfo_sOHSr+2 * log_k 5.01 * * Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ * log_k -6.58 * * Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ * log_k -17.60 * # Barium * Hfo_sOH + Ba+2 = Hfo_sOHBa+2 * log_k 5.46 * * Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ * log_k -7.2 # table 10.5 * # * # Cations from table 10.2 * # * # Silver * Hfo_sOH + Ag+ = Hfo_sOAg + H+ * log_k -1.72 * * Hfo_wOH + Ag+ = Hfo_wOAg + H+ * log_k -5.3 # table 10.5 * # Nickel * Hfo_sOH + Ni+2 = Hfo_sONi+ + H+ * log_k 0.37 * * Hfo_wOH + Ni+2 = Hfo_wONi+ + H+ * log_k -2.5 # table 10.5 * # Cadmium * Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ * log_k 0.47 * * Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ * log_k -2.91 * # Zinc * Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ * log_k 0.99 * * Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ * log_k -1.99 * # Copper * Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ * log_k 2.89 * * Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ * log_k 0.6 # table 10.5 * # Lead * Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ * log_k 4.65 * * Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ * log_k 0.3 # table 10.5 * # * # Derived constants table 10.5 * # * # Magnesium * Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ * log_k -4.6 * * # Manganese * Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ * log_k -0.4 # table 10.5 * * Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ * log_k -3.5 # table 10.5 * * # Uranyl * Hfo_sOH + UO2+2 = Hfo_sOUO2+ + H+ * log_k 5.2 # table 10.5 * * Hfo_wOH + UO2+2 = Hfo_wOUO2+ + H+ * log_k 2.8 # table 10.5 * * # Iron * # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ * # log_k 0.7 # LFER using table 10.5 * * # Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ * # log_k -2.5 # LFER using table 10.5 * * * # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. * Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ * log_k -0.95 * # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M * Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ * log_k -2.98 * * Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ * log_k -11.55 * * ############################################### * # ANIONS # * ############################################### * # * # Anions from table 10.6 * # * # Phosphate * Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O * log_k 31.29 * * Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O * log_k 25.39 * * Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O * log_k 17.72 * # Arsenate * # Hfo_wOH + AsO4-3 + 3H+ = Hfo_wH2AsO4 + H2O * # log_k 29.31 * # * # Hfo_wOH + AsO4-3 + 2H+ = Hfo_wHAsO4- + H2O * # log_k 23.51 * # * # Hfo_wOH + AsO4-3 = Hfo_wOHAsO4-3 * # log_k 10.58 * # * # Anions from table 10.7 * # * # Arsenite * # Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O * # log_k 5.41 * # Borate * Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O * log_k 0.62 * # * # Anions from table 10.8 * # * # Sulfate * Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O * log_k 7.78 * * Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 * log_k 0.79 * # Selenate * Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O * log_k 7.73 * * Hfo_wOH + SeO4-2 = Hfo_wOHSeO4-2 * log_k 0.80 * # Selenite * Hfo_wOH + SeO3-2 + H+ = Hfo_wSeO3- + H2O * log_k 12.69 * * Hfo_wOH + SeO3-2 = Hfo_wOHSeO3-2 * log_k 5.17 * # * # Derived constants table 10.10 * # * Hfo_wOH + F- + H+ = Hfo_wF + H2O * log_k 8.7 * * Hfo_wOH + F- = Hfo_wOHF- * log_k 1.6 * # * # Carbonate: Van Geen et al., 1994 reoptimized for HFO * # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L * # * # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O * # log_k 12.56 * # * # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O * # log_k 20.62 * * RATES * * ########### * #K-feldspar * ########### * # * # Sverdrup, H.U., 1990, The kinetics of base cation release due to * # chemical weathering: Lund University Press, Lund, 246 p. * # * # Example of KINETICS data block for K-feldspar rate: * # KINETICS 1 * # K-feldspar * # -m0 2.16 # 10% K-fsp, 0.1 mm cubes * # -m 1.94 * # -parms 1.36e4 0.1 * * K-feldspar * -start * 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s * 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) * 3 rem parm(2) = corrects for field rate relative to lab rate * 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) * * 10 dif_temp = 1/TK - 1/298 * 20 pk_H = 12.5 + 3134 * dif_temp * 30 pk_w = 15.3 + 1838 * dif_temp * 40 pk_OH = 14.2 + 3134 * dif_temp * 50 pk_CO2 = 14.6 + 1677 * dif_temp * #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC * 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 * 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 * #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 * 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time * 81 rem decrease rate on precipitation * 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 * 100 save moles * -end * * ########### * #Albite * ########### * # * # Sverdrup, H.U., 1990, The kinetics of base cation release due to * # chemical weathering: Lund University Press, Lund, 246 p. * # * # Example of KINETICS data block for Albite rate: * # KINETICS 1 * # Albite * # -m0 0.43 # 2% Albite, 0.1 mm cubes * # -parms 2.72e3 0.1 * * Albite * -start * 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s * 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) * 3 rem parm(2) = corrects for field rate relative to lab rate * 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) * * 10 dif_temp = 1/TK - 1/298 * 20 pk_H = 12.5 + 3359 * dif_temp * 30 pk_w = 14.8 + 2648 * dif_temp * 40 pk_OH = 13.7 + 3359 * dif_temp * #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... * 50 pk_CO2 = 14.0 + 1677 * dif_temp * #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC * 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 * 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 * #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 * 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time * 81 rem decrease rate on precipitation * 90 if SR("Albite") > 1 then moles = moles * 0.1 * 100 save moles * -end * * ######## * #Calcite * ######## * # * # Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, * # American Journal of Science, v. 278, p. 179-216. * # * # Example of KINETICS data block for calcite rate: * # * # KINETICS 1 * # Calcite * # -tol 1e-8 * # -m0 3.e-3 * # -m 3.e-3 * # -parms 5.0 0.6 * Calcite * -start * 1 REM Modified from Plummer and others, 1978 * 2 REM M = current moles of calcite * 3 REM M0 = initial moles of calcite * 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) * 5 REM parm(2) = exponent for M/M0 for surface area correction * 10 REM rate = 0 if no calcite and undersaturated * 20 si_cc = SI("Calcite") * 30 if (M <= 0 and si_cc < 0) then goto 300 * 40 k1 = 10^(0.198 - 444.0 / TK ) * 50 k2 = 10^(2.84 - 2177.0 / TK ) * 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) * 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) * 80 REM surface area calculation * 90 t = 1 * 100 if M0 > 0 then t = M/M0 * 110 if t = 0 then t = 1 * 120 area = PARM(1) * (t)^PARM(2) * 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") * 140 REM 1e-3 converts mmol to mol * 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) * 160 moles = rate * TIME * 170 REM do not dissolve more calcite than present * 180 if (moles > M) then moles = M * 190 if (moles >= 0) then goto 300 * 200 REM do not precipitate more Ca or C(4) than present * 210 temp = TOT("Ca") * 220 mc = TOT("C(4)") * 230 if mc < temp then temp = mc * 240 if -moles > temp then moles = -temp * 300 SAVE moles * -end * * ####### * #Pyrite * ####### * # * # Williamson, M.A. and Rimstidt, J.D., 1994, * # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. * # * # Example of KINETICS data block for pyrite rate: * # KINETICS 1 * # Pyrite * # -tol 1e-8 * # -m0 5.e-4 * # -m 5.e-4 * # -parms 2.0 0.67 .5 -0.11 * Pyrite * -start * 1 rem Williamson and Rimstidt, 1994 * 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) * 3 rem parm(3) = exp for O2 parm(4) = exp for H+ * * 10 if (m <= 0) then goto 200 * 20 if (si("Pyrite") >= 0) then goto 200 * 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) * 30 moles = 10^rate * time * 40 if (moles > m) then moles = m * 200 save moles * -end * * ########## * #Organic_C * ########## * # * # Example of KINETICS data block for Organic_C rate: * # KINETICS 1 * # Organic_C * # -tol 1e-8 * # # m in mol/kgw * # -m0 5e-3 * # -m 5e-3 * Organic_C * -start * 1 rem Additive Monod kinetics * 2 rem Electron acceptors: O2, NO3, and SO4 * * 10 if (m <= 0) then goto 200 * 20 mO2 = mol("O2") * 30 mNO3 = tot("N(5)") * 40 mSO4 = tot("S(6)") * 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) * 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) * 70 moles = rate * m * (m/m0) * time * 80 if (moles > m) then moles = m * 200 save moles * -end * * ########### * #Pyrolusite * ########### * # * # Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press * # * # Example of KINETICS data block for Pyrolusite * # KINETICS 1-12 * # Pyrolusite * # -tol 1.e-7 * # -m0 0.1 * # -m 0.1 * Pyrolusite * -start * 5 if (m <= 0.0) then goto 200 * 7 sr_pl = sr("Pyrolusite") * 9 if abs(1 - sr_pl) < 0.1 then goto 200 * 10 if (sr_pl > 1.0) then goto 100 * #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) * #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 * 30 Fe_t = tot("Fe(2)") * 32 if Fe_t < 1.e-8 then goto 200 * 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) * 50 if moles > Fe_t / 2 then moles = Fe_t / 2 * 70 if moles > m then moles = m * 90 goto 200 * 100 Mn_t = tot("Mn") * 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time * 120 if moles <= -Mn_t then moles = -Mn_t * 200 save moles * -end * END * * ****************************** end wateq4f.dat