dataset of thermodynamic data for gwb programs dataset format: jul22 activity model: phreeqc fugacity model: peng-robinson * * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * This dataset is the thermodynamic database from PhreeqC release 2.8, * for use with the GWB programs. The dataset has been compiled from * file phreeqc.dat. * * Dataset was compiled by Daniel Saalfeld and Craig Bethke, University of * Illinois, August 2003. * * * Notes: * * Log K values were calculated as a function of temperature using the * analytic method from PhreeqC, unless data for this method was not provided. * In that case, log K's were calculated versus temperture according to the * van't Hoff equation. * * The constants in the header section (Debye-Huckel A and B and pressures) * are taken from PhreeqC where available; otherwise, they are the default * GWB values. * * Redox reactions have been rebalanced in terms of O2(aq), rather than the * electron e-, as previously expected by the GWB programs. * * Species O2 has been renamed O2(aq), as expected by the GWB programs. * * The reactions for redox couples have been rebalanced in terms of basis species, * as previously expected by the GWB programs. * * Reactions for aqueous species, minerals, and gases have been rebalanced in * terms of basis species and redox species, as previously expected by the GWB programs. * * Species' names have been converted to the GWB format. For example, Ca++ replaces * Ca+2. * * * To the best of our knowledge, this dataset is not subject to copyright. * * * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ * temperatures 0.0000 12.5000 25.0000 40.0000 55.0000 70.0000 85.0000 100.0000 * pressures 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 1.0134 * debye huckel a (adh) .4911 .4993 .5093 .5235 .5399 .5584 .5788 .6023 * debye huckel b (bdh) .3247 .3264 .3283 .3308 .3335 .3364 .3393 .3427 25 elements Aluminum (Al) mole wt.= 26.9815 g Boron (B ) mole wt.= 10.8100 g Barium (Ba) mole wt.= 137.3400 g Bromine (Br) mole wt.= 79.9040 g Carbon (C ) mole wt.= 12.0111 g Calcium (Ca) mole wt.= 40.0800 g Cadmium (Cd) mole wt.= 112.4000 g Chlorine (Cl) mole wt.= 35.4530 g Copper (Cu) mole wt.= 63.5460 g Fluorine (F ) mole wt.= 18.9984 g Iron (Fe) mole wt.= 55.8470 g Hydrogen (H ) mole wt.= 1.0080 g Potassium (K ) mole wt.= 39.1020 g Lithium (Li) mole wt.= 6.9390 g Magnesium (Mg) mole wt.= 24.3120 g Manganese (Mn) mole wt.= 54.9380 g Nitrogen (N ) mole wt.= 14.0067 g Sodium (Na) mole wt.= 22.9898 g Oxygen (O ) mole wt.= 16.0000 g Phosphorus (P ) mole wt.= 30.9738 g Lead (Pb) mole wt.= 207.1900 g Sulfur (S ) mole wt.= 32.0640 g Silicon (Si) mole wt.= 28.0843 g Strontium (Sr) mole wt.= 87.6200 g Zinc (Zn) mole wt.= 65.3700 g -end- 26 basis species H2O charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 18.0160 g 2 elements in species 2.000 H 1.000 O Al+++ charge= 3 ion size= 9.0 A b= 0.0000 mole wt.= 26.9815 g 1 elements in species 1.000 Al Ba++ charge= 2 ion size= 5.0 A b= 0.0000 mole wt.= 137.3400 g 1 elements in species 1.000 Ba Br- charge= -1 ion size= 3.0 A b= 0.0000 mole wt.= 79.9040 g 1 elements in species 1.000 Br Ca++ charge= 2 ion size= 5.0 A b= .1650 mole wt.= 40.0800 g 1 elements in species 1.000 Ca Cd++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 112.4000 g 1 elements in species 1.000 Cd Cl- charge= -1 ion size= 3.5 A b= .0150 mole wt.= 35.4530 g 1 elements in species 1.000 Cl CO3-- charge= -2 ion size= 5.4 A b= 0.0000 mole wt.= 60.0111 g 2 elements in species 1.000 C 3.000 O Cu++ charge= 2 ion size= 6.0 A b= 0.0000 mole wt.= 63.5460 g 1 elements in species 1.000 Cu F- charge= -1 ion size= 3.5 A b= 0.0000 mole wt.= 18.9984 g 1 elements in species 1.000 F Fe++ charge= 2 ion size= 6.0 A b= 0.0000 mole wt.= 55.8470 g 1 elements in species 1.000 Fe H+ charge= 1 ion size= 9.0 A b= 0.0000 mole wt.= 1.0080 g 1 elements in species 1.000 H H3BO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 61.8340 g 3 elements in species 1.000 B 3.000 H 3.000 O H4SiO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 96.1163 g 3 elements in species 4.000 H 4.000 O 1.000 Si K+ charge= 1 ion size= 3.5 A b= .0150 mole wt.= 39.1020 g 1 elements in species 1.000 K Li+ charge= 1 ion size= 6.0 A b= 0.0000 mole wt.= 6.9390 g 1 elements in species 1.000 Li Mg++ charge= 2 ion size= 5.5 A b= .2000 mole wt.= 24.3120 g 1 elements in species 1.000 Mg Mn++ charge= 2 ion size= 6.0 A b= 0.0000 mole wt.= 54.9380 g 1 elements in species 1.000 Mn Na+ charge= 1 ion size= 4.0 A b= .0750 mole wt.= 22.9898 g 1 elements in species 1.000 Na NO3- charge= -1 ion size= 3.0 A b= 0.0000 mole wt.= 62.0067 g 2 elements in species 1.000 N 3.000 O O2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 32.0000 g 1 elements in species 2.000 O Pb++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 207.1900 g 1 elements in species 1.000 Pb PO4--- charge= -3 ion size= 4.0 A b= 0.0000 mole wt.= 94.9738 g 2 elements in species 4.000 O 1.000 P SO4-- charge= -2 ion size= 5.0 A b= -.0400 mole wt.= 96.0640 g 2 elements in species 4.000 O 1.000 S Sr++ charge= 2 ion size= 5.3 A b= .1210 mole wt.= 87.6200 g 1 elements in species 1.000 Sr Zn++ charge= 2 ion size= 5.0 A b= 0.0000 mole wt.= 65.3700 g 1 elements in species 1.000 Zn -end- 9 redox couples CH4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 16.0431 g 4 species in reaction 1.000 H2O 1.000 CO3-- 2.000 H+ -2.000 O2(aq) 145.0792 137.7780 131.0890 123.7671 117.1145 111.0436 105.4812 100.3660 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Cu+ charge= 1 ion size= 2.5 A b= 0.0000 mole wt.= 63.5460 g 4 species in reaction .500 H2O 1.000 Cu++ -1.000 H+ -.250 O2(aq) 21.1713 19.9338 18.8000 17.5589 16.4313 15.4023 14.4595 13.5925 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Fe+++ charge= 3 ion size= 9.0 A b= 0.0000 mole wt.= 55.8470 g 4 species in reaction 1.000 Fe++ -.500 H2O 1.000 H+ .250 O2(aq) -10.1112 -9.2704 -8.5000 -7.6567 -6.8906 -6.1914 -5.5508 -4.9617 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components H2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 2.0160 g 2 species in reaction 1.000 H2O -.500 O2(aq) 50.5933 48.2953 46.1900 43.8855 41.7917 39.8809 38.1302 36.5203 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components HS- charge= -1 ion size= 3.5 A b= 0.0000 mole wt.= 33.0720 g 3 species in reaction 1.000 H+ -2.000 O2(aq) 1.000 SO4-- 152.5605 145.2278 138.5100 131.1565 124.4753 118.3782 112.7918 107.6545 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Mn+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 54.9380 g 4 species in reaction -.500 H2O 1.000 H+ .250 O2(aq) 1.000 Mn++ 3.4602 3.7367 3.9900 4.2673 4.5192 4.7491 4.9598 5.1535 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components N2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 28.0134 g 4 species in reaction -1.000 H2O 2.000 H+ -2.500 O2(aq) 2.000 NO3- 9.7868 8.9169 8.1200 7.2477 6.4551 5.7318 5.0692 4.4597 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NH4+ charge= 1 ion size= 2.5 A b= 0.0000 mole wt.= 18.0387 g 4 species in reaction 1.000 H2O 2.000 H+ -2.000 O2(aq) 1.000 NO3- 58.6193 55.7300 53.0830 50.1855 47.5529 45.1505 42.9493 40.9251 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NO2- charge= -1 ion size= 3.0 A b= 0.0000 mole wt.= 46.0067 g 2 species in reaction -.500 O2(aq) 1.000 NO3- 16.0556 15.2281 14.4700 13.6402 12.8862 12.1982 11.5677 10.9880 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components -end- 151 aqueous species Al(OH)2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 60.9975 g 3 species in reaction 1.000 Al+++ 2.000 H2O -2.000 H+ 11.9602 10.9827 10.1087 9.1780 8.3582 7.6337 6.9913 6.4205 * used analytic equation to compute logKs Al(OH)3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 19.7429 18.2497 16.9404 15.5776 14.4095 13.4073 12.5477 11.8110 * used analytic equation to compute logKs Al(OH)4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 95.0135 g 3 species in reaction 1.000 Al+++ 4.000 H2O -4.000 H+ 25.5284 24.0279 22.6651 21.1877 19.8594 18.6601 17.5732 16.5844 * used analytic equation to compute logKs Al(SO4)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 219.1095 g 2 species in reaction 1.000 Al+++ 2.000 SO4-- -4.7914 -4.9002 -5.0000 -5.1092 -5.2084 -5.2989 -5.3819 -5.4582 * used van't Hoff equation to compute logKs AlF++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 45.9799 g 2 species in reaction 1.000 Al+++ 1.000 F- -6.9289 -6.9660 -7.0000 -7.0372 -7.0710 -7.1019 -7.1302 -7.1562 * used van't Hoff equation to compute logKs AlF2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 64.9783 g 2 species in reaction 1.000 Al+++ 2.000 F- -12.5672 -12.6365 -12.7000 -12.7695 -12.8327 -12.8903 -12.9431 -12.9917 * used van't Hoff equation to compute logKs AlF3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 83.9767 g 2 species in reaction 1.000 Al+++ 3.000 F- -16.6551 -16.7307 -16.8000 -16.8758 -16.9447 -17.0076 -17.0652 -17.1182 * used van't Hoff equation to compute logKs AlF4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 102.9751 g 2 species in reaction 1.000 Al+++ 4.000 F- -19.2524 -19.3294 -19.4000 -19.4772 -19.5474 -19.6115 -19.6701 -19.7241 * used van't Hoff equation to compute logKs AlF5-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 121.9735 g 2 species in reaction 1.000 Al+++ 5.000 F- -20.4766 -20.5410 -20.6000 -20.6646 -20.7233 -20.7769 -20.8259 -20.8711 * used van't Hoff equation to compute logKs AlF6--- charge= -3 ion size= 0.0 A b= 0.0000 mole wt.= 140.9719 g 2 species in reaction 1.000 Al+++ 6.000 F- -20.7120 -20.6536 -20.6000 -20.5414 -20.4881 -20.4395 -20.3949 -20.3540 * used van't Hoff equation to compute logKs AlHSO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 124.0535 g 3 species in reaction 1.000 Al+++ 1.000 H+ 1.000 SO4-- -2.2381 -2.3357 -2.4478 -2.5980 -2.7623 -2.9380 -3.1229 -3.3153 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components AlOH++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 43.9895 g 3 species in reaction 1.000 Al+++ 1.000 H2O -1.000 H+ 5.7493 5.3657 5.0029 4.5921 4.2051 3.8396 3.4933 3.1644 * used analytic equation to compute logKs AlSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 123.0455 g 2 species in reaction 1.000 Al+++ 1.000 SO4-- -3.3464 -3.4265 -3.5000 -3.5804 -3.6535 -3.7201 -3.7812 -3.8374 * used van't Hoff equation to compute logKs BaCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 197.3511 g 2 species in reaction 1.000 CO3-- 1.000 Ba++ -2.4951 -2.6042 -2.7132 -2.8440 -2.9748 -3.1056 -3.2364 -3.3672 * used analytic equation to compute logKs BaHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 198.3591 g 3 species in reaction 1.000 CO3-- 1.000 Ba++ 1.000 H+ -11.2685 -11.2680 -11.3105 -11.4083 -11.5488 -11.7248 -11.9306 -12.1620 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components BaOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 154.3480 g 3 species in reaction 1.000 H2O 1.000 Ba++ -1.000 H+ 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 13.4700 * used van't Hoff equation to compute logKs BaSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 233.4040 g 2 species in reaction 1.000 Ba++ 1.000 SO4-- -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 -2.7000 * used van't Hoff equation to compute logKs BF(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 80.8324 g 2 species in reaction 1.000 F- 1.000 H3BO3 .5241 .4593 .4000 .3350 .2760 .2222 .1728 .1275 * used van't Hoff equation to compute logKs BF2(OH)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 82.8228 g 4 species in reaction -1.000 H2O 2.000 F- 1.000 H3BO3 1.000 H+ -7.5215 -7.5781 -7.6300 -7.6868 -7.7384 -7.7855 -7.8287 -7.8684 * used van't Hoff equation to compute logKs BF3OH- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 84.8132 g 4 species in reaction -2.000 H2O 3.000 F- 1.000 H3BO3 2.000 H+ -13.7783 -13.7218 -13.6700 -13.6133 -13.5618 -13.5149 -13.4718 -13.4322 * used van't Hoff equation to compute logKs BF4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 86.8036 g 4 species in reaction -3.000 H2O 4.000 F- 1.000 H3BO3 3.000 H+ -20.4038 -20.3392 -20.2800 -20.2152 -20.1563 -20.1026 -20.0533 -20.0080 * used van't Hoff equation to compute logKs CaCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -3.1354 -3.1440 -3.2253 -3.3847 -3.5811 -3.7894 -3.9904 -4.1694 * used analytic equation to compute logKs CaF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 59.0784 g 2 species in reaction 1.000 F- 1.000 Ca++ -.6636 -.8078 -.9400 -1.0847 -1.2161 -1.3360 -1.4459 -1.5470 * used van't Hoff equation to compute logKs CaH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 137.0698 g 3 species in reaction 1.000 PO4--- 2.000 H+ 1.000 Ca++ -21.0361 -20.9969 -20.9610 -20.9217 -20.8859 -20.8533 -20.8235 -20.7960 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CaHCO3+ charge= 1 ion size= 5.4 A b= 0.0000 mole wt.= 101.0991 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Ca++ -11.4486 -11.4545 -11.4347 -11.4004 -11.3758 -11.3779 -11.4198 -11.5110 * used analytic equation to compute logKs CaHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.0618 g 3 species in reaction 1.000 PO4--- 1.000 H+ 1.000 Ca++ -15.1004 -15.0924 -15.0850 -15.0769 -15.0696 -15.0629 -15.0568 -15.0511 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components CaHSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 137.1520 g 3 species in reaction 1.000 H+ 1.000 SO4-- 1.000 Ca++ -2.8581 -2.9557 -3.0678 -3.2180 -3.3823 -3.5580 -3.7429 -3.9353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CaOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 57.0880 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Ca++ 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 12.7800 * used van't Hoff equation to compute logKs CaPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0538 g 2 species in reaction 1.000 PO4--- 1.000 Ca++ -6.2510 -6.3596 -6.4590 -6.5678 -6.6667 -6.7570 -6.8397 -6.9157 * used van't Hoff equation to compute logKs CaSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.1440 g 2 species in reaction 1.000 SO4-- 1.000 Ca++ -2.1893 -2.2471 -2.3000 -2.3579 -2.4106 -2.4586 -2.5026 -2.5431 * used van't Hoff equation to compute logKs Cd(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 232.4222 g 2 species in reaction 1.000 Cd++ 2.000 CO3-- -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 -6.4000 * used van't Hoff equation to compute logKs Cd(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 146.4160 g 3 species in reaction 1.000 Cd++ 2.000 H2O -2.000 H+ 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 20.3500 * used van't Hoff equation to compute logKs Cd(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 163.4240 g 3 species in reaction 1.000 Cd++ 3.000 H2O -3.000 H+ 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 33.3000 * used van't Hoff equation to compute logKs Cd(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 180.4320 g 3 species in reaction 1.000 Cd++ 4.000 H2O -4.000 H+ 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 47.3500 * used van't Hoff equation to compute logKs Cd(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 304.5280 g 2 species in reaction 1.000 Cd++ 2.000 SO4-- -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 -3.5000 * used van't Hoff equation to compute logKs CdCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 147.8530 g 2 species in reaction 1.000 Cd++ 1.000 Cl- -1.9404 -1.9611 -1.9800 -2.0007 -2.0195 -2.0367 -2.0524 -2.0669 * used van't Hoff equation to compute logKs CdCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 183.3060 g 2 species in reaction 1.000 Cd++ 2.000 Cl- -2.5168 -2.5602 -2.6000 -2.6435 -2.6831 -2.7192 -2.7523 -2.7827 * used van't Hoff equation to compute logKs CdCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 218.7590 g 2 species in reaction 1.000 Cd++ 3.000 Cl- -2.1384 -2.2749 -2.4000 -2.5369 -2.6613 -2.7749 -2.8789 -2.9746 * used van't Hoff equation to compute logKs CdCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 172.4111 g 2 species in reaction 1.000 Cd++ 1.000 CO3-- -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 -2.9000 * used van't Hoff equation to compute logKs CdHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 173.4191 g 3 species in reaction 1.000 Cd++ 1.000 CO3-- 1.000 H+ -12.1286 -11.9573 -11.8289 -11.7217 -11.6571 -11.6281 -11.6289 -11.6552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components CdOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 129.4080 g 3 species in reaction 1.000 Cd++ 1.000 H2O -1.000 H+ 10.9588 10.5002 10.0800 9.6201 9.2022 8.8208 8.4714 8.1501 * used van't Hoff equation to compute logKs CdSO4(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 208.4640 g 2 species in reaction 1.000 Cd++ 1.000 SO4-- -2.3875 -2.4254 -2.4600 -2.4979 -2.5324 -2.5638 -2.5926 -2.6191 * used van't Hoff equation to compute logKs CO2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 44.0111 g 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ -17.2071 -16.8974 -16.6807 -16.5191 -16.4433 -16.4365 -16.4859 -16.5819 * used analytic equation to compute logKs Cu(OH)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 97.5620 g 3 species in reaction 2.000 H2O 1.000 Cu++ -2.000 H+ 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 13.6800 * used van't Hoff equation to compute logKs Cu(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 114.5700 g 3 species in reaction 3.000 H2O 1.000 Cu++ -3.000 H+ 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 26.9000 * used van't Hoff equation to compute logKs Cu(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 131.5780 g 3 species in reaction 4.000 H2O 1.000 Cu++ -4.000 H+ 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 39.6000 * used van't Hoff equation to compute logKs CuOH+ charge= 1 ion size= 4.0 A b= 0.0000 mole wt.= 80.5540 g 3 species in reaction 1.000 H2O 1.000 Cu++ -1.000 H+ 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 8.0000 * used van't Hoff equation to compute logKs CuSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 159.6100 g 2 species in reaction 1.000 Cu++ 1.000 SO4-- -2.2282 -2.2709 -2.3100 -2.3528 -2.3918 -2.4273 -2.4598 -2.4897 * used van't Hoff equation to compute logKs Fe(HS)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 121.9910 g 2 species in reaction 1.000 Fe++ 2.000 HS- -8.9500 -8.9500 -8.9500 -8.9500 -8.9500 -8.9500 -8.9500 -8.9500 * used van't Hoff equation to compute logKs Fe(HS)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 155.0630 g 2 species in reaction 1.000 Fe++ 3.000 HS- -10.9870 -10.9870 -10.9870 -10.9870 -10.9870 -10.9870 -10.9870 -10.9870 * used van't Hoff equation to compute logKs Fe(OH)2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 89.8630 g 3 species in reaction 2.000 H2O 1.000 Fe+++ -2.000 H+ 6.8172 6.2185 5.6700 5.0696 4.5241 4.0263 3.5702 3.1508 * used van't Hoff equation to compute logKs Fe(OH)3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 106.8710 g 3 species in reaction 3.000 H2O 1.000 Fe+++ -3.000 H+ 14.2237 13.3555 12.5600 11.6893 10.8981 10.1762 9.5147 8.9064 * used van't Hoff equation to compute logKs Fe(OH)4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 123.8790 g 3 species in reaction 4.000 H2O 1.000 Fe+++ -4.000 H+ 23.7401 22.6232 21.6000 20.4800 19.4624 18.5337 17.6828 16.9004 * used van't Hoff equation to compute logKs Fe(SO4)2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 247.9750 g 2 species in reaction 1.000 Fe+++ 2.000 SO4-- -5.0714 -5.2325 -5.3800 -5.5415 -5.6882 -5.8222 -5.9449 -6.0577 * used van't Hoff equation to compute logKs Fe2(OH)2++++ charge= 4 ion size= 0.0 A b= 0.0000 mole wt.= 145.7100 g 3 species in reaction 2.000 H2O 2.000 Fe+++ -2.000 H+ 3.8557 3.3830 2.9500 2.4760 2.0454 1.6524 1.2923 .9611 * used van't Hoff equation to compute logKs Fe3(OH)4+++++ charge= 5 ion size= 0.0 A b= 0.0000 mole wt.= 235.5730 g 3 species in reaction 4.000 H2O 3.000 Fe+++ -4.000 H+ 7.2593 6.7587 6.3000 5.7979 5.3417 4.9255 4.5440 4.1933 * used van't Hoff equation to compute logKs FeCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 91.3000 g 2 species in reaction 1.000 Fe++ 1.000 Cl- -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 -.1400 * used van't Hoff equation to compute logKs FeCl++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 91.3000 g 2 species in reaction 1.000 Cl- 1.000 Fe+++ -1.1043 -1.3004 -1.4800 -1.6766 -1.8553 -2.0183 -2.1677 -2.3050 * used van't Hoff equation to compute logKs FeCl2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 126.7530 g 2 species in reaction 2.000 Cl- 1.000 Fe+++ -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 -2.1300 * used van't Hoff equation to compute logKs FeCl3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 162.2060 g 2 species in reaction 3.000 Cl- 1.000 Fe+++ -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 -1.1300 * used van't Hoff equation to compute logKs FeCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 115.8581 g 2 species in reaction 1.000 Fe++ 1.000 CO3-- -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 -4.3800 * used van't Hoff equation to compute logKs FeF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 74.8454 g 2 species in reaction 1.000 Fe++ 1.000 F- -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 -1.0000 * used van't Hoff equation to compute logKs FeF++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 74.8454 g 2 species in reaction 1.000 F- 1.000 Fe+++ -6.0189 -6.1134 -6.2000 -6.2948 -6.3809 -6.4595 -6.5315 -6.5978 * used van't Hoff equation to compute logKs FeF2+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 93.8438 g 2 species in reaction 2.000 F- 1.000 Fe+++ -10.4780 -10.6460 -10.8000 -10.9685 -11.1217 -11.2614 -11.3894 -11.5072 * used van't Hoff equation to compute logKs FeF3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 112.8422 g 2 species in reaction 3.000 F- 1.000 Fe+++ -13.6377 -13.8268 -14.0000 -14.1896 -14.3619 -14.5191 -14.6631 -14.7955 * used van't Hoff equation to compute logKs FeH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 152.8368 g 3 species in reaction 1.000 Fe++ 1.000 PO4--- 2.000 H+ -22.5562 -22.3980 -22.2530 -22.0943 -21.9501 -21.8185 -21.6980 -21.5871 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeH2PO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 152.8368 g 3 species in reaction 1.000 PO4--- 1.000 Fe+++ 2.000 H+ -25.2862 -25.1280 -24.9830 -24.8243 -24.6801 -24.5485 -24.4280 -24.3171 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 116.8661 g 3 species in reaction 1.000 Fe++ 1.000 CO3-- 1.000 H+ -12.6286 -12.4573 -12.3289 -12.2217 -12.1571 -12.1281 -12.1289 -12.1552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.8288 g 3 species in reaction 1.000 Fe++ 1.000 PO4--- 1.000 H+ -16.1828 -16.0592 -15.9460 -15.8221 -15.7095 -15.6067 -15.5125 -15.4259 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHPO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 151.8288 g 3 species in reaction 1.000 PO4--- 1.000 Fe+++ 1.000 H+ -17.6264 -17.7045 -17.7760 -17.8543 -17.9254 -17.9904 -18.0498 -18.1045 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 152.9190 g 3 species in reaction 1.000 Fe++ 1.000 H+ 1.000 SO4-- -2.8581 -2.9557 -3.0678 -3.2180 -3.3823 -3.5580 -3.7429 -3.9353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeHSO4++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 152.9190 g 3 species in reaction 1.000 Fe+++ 1.000 H+ 1.000 SO4-- -4.2581 -4.3557 -4.4678 -4.6180 -4.7823 -4.9580 -5.1429 -5.3353 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components FeOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 72.8550 g 3 species in reaction 1.000 Fe++ 1.000 H2O -1.000 H+ 10.3855 9.9234 9.5000 9.0365 8.6155 8.2312 7.8791 7.5553 * used van't Hoff equation to compute logKs FeOH++ charge= 2 ion size= 0.0 A b= 0.0000 mole wt.= 72.8550 g 3 species in reaction 1.000 H2O 1.000 Fe+++ -1.000 H+ 2.8877 2.5236 2.1900 1.8249 1.4931 1.1903 .9129 .6578 * used van't Hoff equation to compute logKs FeSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.9110 g 2 species in reaction 1.000 Fe++ 1.000 SO4-- -2.0333 -2.1464 -2.2500 -2.3634 -2.4664 -2.5605 -2.6466 -2.7259 * used van't Hoff equation to compute logKs FeSO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 151.9110 g 2 species in reaction 1.000 Fe+++ 1.000 SO4-- -3.7777 -3.9146 -4.0400 -4.1773 -4.3020 -4.4158 -4.5201 -4.6160 * used van't Hoff equation to compute logKs H2BO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 60.8260 g 2 species in reaction 1.000 H3BO3 -1.000 H+ 9.4563 9.3434 9.2400 9.1268 9.0240 8.9301 8.8441 8.7650 * used van't Hoff equation to compute logKs H2PO4- charge= -1 ion size= 4.5 A b= 0.0000 mole wt.= 96.9898 g 2 species in reaction 1.000 PO4--- 2.000 H+ -19.8562 -19.6980 -19.5530 -19.3943 -19.2501 -19.1185 -18.9980 -18.8871 * used van't Hoff equation to compute logKs H2S charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 34.0800 g 2 species in reaction 1.000 HS- 1.000 H+ -7.3518 -7.1247 -6.9417 -6.7728 -6.6520 -6.5731 -6.5308 -6.5207 * used analytic equation to compute logKs H2SiO4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 94.1003 g 2 species in reaction 1.000 H4SiO4 -2.000 H+ 24.2687 23.5849 22.9987 22.4045 21.9115 21.5046 21.1719 20.9039 * used analytic equation to compute logKs H3SiO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 95.1083 g 2 species in reaction 1.000 H4SiO4 -1.000 H+ 10.2795 10.0366 9.8314 9.6253 9.4548 9.3134 9.1964 9.1003 * used analytic equation to compute logKs HCO3- charge= -1 ion size= 5.4 A b= 0.0000 mole wt.= 61.0191 g 2 species in reaction 1.000 CO3-- 1.000 H+ -10.6286 -10.4573 -10.3289 -10.2217 -10.1571 -10.1281 -10.1289 -10.1552 * used analytic equation to compute logKs HF charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 20.0064 g 2 species in reaction 1.000 F- 1.000 H+ -2.9916 -3.0809 -3.1760 -3.2968 -3.4238 -3.5563 -3.6937 -3.8352 * used analytic equation to compute logKs HF2- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 39.0048 g 2 species in reaction 2.000 F- 1.000 H+ -3.4548 -3.6141 -3.7600 -3.9198 -4.0649 -4.1974 -4.3187 -4.4303 * used van't Hoff equation to compute logKs HPO4-- charge= -2 ion size= 4.0 A b= 0.0000 mole wt.= 95.9818 g 2 species in reaction 1.000 PO4--- 1.000 H+ -12.5828 -12.4592 -12.3460 -12.2221 -12.1095 -12.0067 -11.9125 -11.8259 * used van't Hoff equation to compute logKs HSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 97.0720 g 2 species in reaction 1.000 H+ 1.000 SO4-- -1.7781 -1.8757 -1.9878 -2.1380 -2.3023 -2.4780 -2.6629 -2.8553 * used analytic equation to compute logKs KHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.0838 g 3 species in reaction 1.000 PO4--- 1.000 K+ 1.000 H+ -12.8728 -12.7492 -12.6360 -12.5121 -12.3995 -12.2967 -12.2025 -12.1159 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components KOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 56.1100 g 3 species in reaction 1.000 H2O 1.000 K+ -1.000 H+ 14.4600 14.4600 14.4600 14.4600 14.4600 14.4600 14.4600 14.4600 * used van't Hoff equation to compute logKs KSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 135.1660 g 2 species in reaction 1.000 K+ 1.000 SO4-- -.6400 -.7479 -.8467 -.9550 -1.0533 -1.1430 -1.2252 -1.3008 * used analytic equation to compute logKs LiOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 23.9470 g 3 species in reaction 1.000 Li+ 1.000 H2O -1.000 H+ 13.6400 13.6400 13.6400 13.6400 13.6400 13.6400 13.6400 13.6400 * used van't Hoff equation to compute logKs LiSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 103.0030 g 2 species in reaction 1.000 Li+ 1.000 SO4-- -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 -.6400 * used van't Hoff equation to compute logKs MgCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.3231 g 2 species in reaction 1.000 Mg++ 1.000 CO3-- -2.8129 -2.8963 -2.9797 -3.0797 -3.1798 -3.2798 -3.3799 -3.4799 * used analytic equation to compute logKs MgF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 43.3104 g 2 species in reaction 1.000 Mg++ 1.000 F- -1.6053 -1.7174 -1.8200 -1.9324 -2.0344 -2.1276 -2.2129 -2.2914 * used van't Hoff equation to compute logKs MgH2PO4+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 121.3018 g 3 species in reaction 1.000 Mg++ 1.000 PO4--- 2.000 H+ -21.1411 -21.1019 -21.0660 -21.0267 -20.9909 -20.9583 -20.9285 -20.9010 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MgHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 85.3311 g 3 species in reaction 1.000 Mg++ 1.000 CO3-- 1.000 H+ -11.6799 -11.5088 -11.3971 -11.3283 -11.3185 -11.3575 -11.4374 -11.5518 * used analytic equation to compute logKs MgHPO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.2938 g 3 species in reaction 1.000 Mg++ 1.000 PO4--- 1.000 H+ -15.2314 -15.2234 -15.2160 -15.2079 -15.2006 -15.1939 -15.1878 -15.1821 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components MgOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 41.3200 g 3 species in reaction 1.000 H2O 1.000 Mg++ -1.000 H+ 12.5102 11.9517 11.4400 10.8799 10.3710 9.9067 9.4812 9.0899 * used van't Hoff equation to compute logKs MgPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 119.2858 g 2 species in reaction 1.000 Mg++ 1.000 PO4--- -6.3810 -6.4896 -6.5890 -6.6978 -6.7967 -6.8870 -6.9697 -7.0457 * used van't Hoff equation to compute logKs MgSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 120.3760 g 2 species in reaction 1.000 Mg++ 1.000 SO4-- -2.0648 -2.2241 -2.3700 -2.5298 -2.6749 -2.8074 -2.9287 -3.0403 * used van't Hoff equation to compute logKs Mn(NO3)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 178.9514 g 2 species in reaction 2.000 NO3- 1.000 Mn++ -.6266 -.6127 -.6000 -.5861 -.5735 -.5619 -.5514 -.5417 * used van't Hoff equation to compute logKs MnCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 90.3910 g 2 species in reaction 1.000 Cl- 1.000 Mn++ -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 -.6100 * used van't Hoff equation to compute logKs MnCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 125.8440 g 2 species in reaction 2.000 Cl- 1.000 Mn++ -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 -.2500 * used van't Hoff equation to compute logKs MnCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 161.2970 g 2 species in reaction 3.000 Cl- 1.000 Mn++ .3100 .3100 .3100 .3100 .3100 .3100 .3100 .3100 * used van't Hoff equation to compute logKs MnCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 114.9491 g 2 species in reaction 1.000 CO3-- 1.000 Mn++ -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 -4.9000 * used van't Hoff equation to compute logKs MnF+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 73.9364 g 2 species in reaction 1.000 F- 1.000 Mn++ -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 -.8400 * used van't Hoff equation to compute logKs MnHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 115.9571 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Mn++ -12.5786 -12.4073 -12.2789 -12.1717 -12.1071 -12.0781 -12.0789 -12.1052 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components MnOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 71.9460 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Mn++ 11.5560 11.0519 10.5900 10.0844 9.6250 9.2058 8.8218 8.4685 * used van't Hoff equation to compute logKs MnSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 151.0020 g 2 species in reaction 1.000 SO4-- 1.000 Mn++ -2.0239 -2.1419 -2.2500 -2.3683 -2.4758 -2.5739 -2.6638 -2.7465 * used van't Hoff equation to compute logKs NaCO3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 83.0009 g 2 species in reaction 1.000 CO3-- 1.000 Na+ -.6723 -.9842 -1.2700 -1.5828 -1.8671 -2.1264 -2.3641 -2.5827 * used van't Hoff equation to compute logKs NaF charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 41.9882 g 2 species in reaction 1.000 F- 1.000 Na+ .2400 .2400 .2400 .2400 .2400 .2400 .2400 .2400 * used van't Hoff equation to compute logKs NaHCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 84.0089 g 3 species in reaction 1.000 CO3-- 1.000 Na+ 1.000 H+ -10.3786 -10.2073 -10.0789 -9.9717 -9.9071 -9.8781 -9.8789 -9.9052 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components NaHPO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 118.9716 g 3 species in reaction 1.000 PO4--- 1.000 Na+ 1.000 H+ -12.8728 -12.7492 -12.6360 -12.5121 -12.3995 -12.2967 -12.2025 -12.1159 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components NaOH charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 39.9978 g 3 species in reaction 1.000 H2O 1.000 Na+ -1.000 H+ 14.1800 14.1800 14.1800 14.1800 14.1800 14.1800 14.1800 14.1800 * used van't Hoff equation to compute logKs NaSO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 119.0538 g 2 species in reaction 1.000 Na+ 1.000 SO4-- -.6249 -.6641 -.7000 -.7393 -.7751 -.8077 -.8375 -.8650 * used van't Hoff equation to compute logKs NH3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 17.0307 g 2 species in reaction 1.000 NH4+ -1.000 H+ 10.0841 9.6451 9.2442 8.8070 8.4114 8.0521 7.7243 7.4244 * used analytic equation to compute logKs NH4SO4- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 114.1027 g 2 species in reaction 1.000 NH4+ 1.000 SO4-- -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 -1.1100 * used van't Hoff equation to compute logKs OH- charge= -1 ion size= 3.5 A b= 0.0000 mole wt.= 17.0080 g 2 species in reaction 1.000 H2O -1.000 H+ 14.9421 14.4387 13.9995 13.5431 13.1507 12.8121 12.5190 12.2654 * used analytic equation to compute logKs Pb(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 327.2122 g 2 species in reaction 2.000 CO3-- 1.000 Pb++ -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 -10.6400 * used van't Hoff equation to compute logKs Pb(OH)2(aq) charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 241.2060 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 Pb++ 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 17.1200 * used van't Hoff equation to compute logKs Pb(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 258.2140 g 3 species in reaction 3.000 H2O -3.000 H+ 1.000 Pb++ 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 28.0600 * used van't Hoff equation to compute logKs Pb(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 275.2220 g 3 species in reaction 4.000 H2O -4.000 H+ 1.000 Pb++ 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 39.7000 * used van't Hoff equation to compute logKs Pb(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 399.3180 g 2 species in reaction 2.000 SO4-- 1.000 Pb++ -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 -3.4700 * used van't Hoff equation to compute logKs Pb2OH+++ charge= 3 ion size= 0.0 A b= 0.0000 mole wt.= 431.3880 g 3 species in reaction 1.000 H2O -1.000 H+ 2.000 Pb++ 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 6.3600 * used van't Hoff equation to compute logKs PbCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 242.6430 g 2 species in reaction 1.000 Cl- 1.000 Pb++ -1.3062 -1.4595 -1.6000 -1.7538 -1.8935 -2.0210 -2.1378 -2.2453 * used van't Hoff equation to compute logKs PbCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 278.0960 g 2 species in reaction 2.000 Cl- 1.000 Pb++ -1.7275 -1.7654 -1.8000 -1.8379 -1.8724 -1.9038 -1.9326 -1.9591 * used van't Hoff equation to compute logKs PbCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 313.5490 g 2 species in reaction 3.000 Cl- 1.000 Pb++ -1.5544 -1.6304 -1.7000 -1.7762 -1.8454 -1.9086 -1.9665 -2.0197 * used van't Hoff equation to compute logKs PbCl4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 349.0020 g 2 species in reaction 4.000 Cl- 1.000 Pb++ -1.1432 -1.2668 -1.3800 -1.5039 -1.6165 -1.7193 -1.8135 -1.9001 * used van't Hoff equation to compute logKs PbCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 267.2011 g 2 species in reaction 1.000 CO3-- 1.000 Pb++ -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 -7.2400 * used van't Hoff equation to compute logKs PbHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 268.2091 g 3 species in reaction 1.000 CO3-- 1.000 H+ 1.000 Pb++ -13.5286 -13.3573 -13.2289 -13.1217 -13.0571 -13.0281 -13.0289 -13.0552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components PbNO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 269.1967 g 2 species in reaction 1.000 NO3- 1.000 Pb++ -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 -1.1700 * used van't Hoff equation to compute logKs PbOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 224.1980 g 3 species in reaction 1.000 H2O -1.000 H+ 1.000 Pb++ 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 7.7100 * used van't Hoff equation to compute logKs PbSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 303.2540 g 2 species in reaction 1.000 SO4-- 1.000 Pb++ -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 -2.7500 * used van't Hoff equation to compute logKs S-- charge= -2 ion size= 5.0 A b= 0.0000 mole wt.= 32.0640 g 2 species in reaction 1.000 HS- -1.000 H+ 13.7297 13.3061 12.9180 12.4932 12.1072 11.7549 11.4322 11.1354 * used van't Hoff equation to compute logKs SiF6-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 142.0747 g 4 species in reaction -4.000 H2O 1.000 H4SiO4 6.000 F- 4.000 H+ -31.2708 -30.7015 -30.1800 -29.6091 -29.0904 -28.6171 -28.1834 -27.7845 * used van't Hoff equation to compute logKs SrCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 147.6311 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ -2.4844 -2.6447 -2.8051 -2.9975 -3.1899 -3.3822 -3.5746 -3.7670 * used analytic equation to compute logKs SrHCO3+ charge= 1 ion size= 5.4 A b= 0.0000 mole wt.= 148.6391 g 3 species in reaction 1.000 CO3-- 1.000 Sr++ 1.000 H+ -11.4415 -11.4561 -11.5135 -11.6293 -11.7877 -11.9817 -12.2055 -12.4549 * used analytic equation to compute logKs SrOH+ charge= 1 ion size= 5.0 A b= 0.0000 mole wt.= 104.6280 g 3 species in reaction 1.000 H2O 1.000 Sr++ -1.000 H+ 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 13.2900 * used van't Hoff equation to compute logKs SrSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 183.6840 g 2 species in reaction 1.000 Sr++ 1.000 SO4-- -2.1505 -2.2233 -2.2900 -2.3630 -2.4294 -2.4899 -2.5454 -2.5964 * used van't Hoff equation to compute logKs Zn(CO3)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 185.3922 g 2 species in reaction 2.000 CO3-- 1.000 Zn++ -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 -9.6300 * used van't Hoff equation to compute logKs Zn(OH)2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 16.9000 * used van't Hoff equation to compute logKs Zn(OH)3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 116.3940 g 3 species in reaction 3.000 H2O 1.000 Zn++ -3.000 H+ 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 28.4000 * used van't Hoff equation to compute logKs Zn(OH)4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 133.4020 g 3 species in reaction 4.000 H2O 1.000 Zn++ -4.000 H+ 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 41.2000 * used van't Hoff equation to compute logKs Zn(SO4)2-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 257.4980 g 2 species in reaction 1.000 Zn++ 2.000 SO4-- -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 -3.2800 * used van't Hoff equation to compute logKs ZnCl+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 100.8230 g 2 species in reaction 1.000 Zn++ 1.000 Cl- .0926 -.1801 -.4300 -.7035 -.9520 -1.1788 -1.3866 -1.5777 * used van't Hoff equation to compute logKs ZnCl2 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 136.2760 g 2 species in reaction 1.000 Zn++ 2.000 Cl- .1202 -.1774 -.4500 -.7484 -1.0196 -1.2670 -1.4938 -1.7023 * used van't Hoff equation to compute logKs ZnCl3- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 171.7290 g 2 species in reaction 1.000 Zn++ 3.000 Cl- .1413 -.1934 -.5000 -.8357 -1.1406 -1.4189 -1.6739 -1.9084 * used van't Hoff equation to compute logKs ZnCl4-- charge= -2 ion size= 0.0 A b= 0.0000 mole wt.= 207.1820 g 2 species in reaction 1.000 Zn++ 4.000 Cl- .5353 .1515 -.2000 -.5848 -.9344 -1.2535 -1.5458 -1.8147 * used van't Hoff equation to compute logKs ZnCO3 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 125.3811 g 2 species in reaction 1.000 CO3-- 1.000 Zn++ -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 -5.3000 * used van't Hoff equation to compute logKs ZnHCO3+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 126.3891 g 3 species in reaction 1.000 CO3-- 1.000 Zn++ 1.000 H+ -12.7286 -12.5573 -12.4289 -12.3217 -12.2571 -12.2281 -12.2289 -12.2552 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components ZnOH+ charge= 1 ion size= 0.0 A b= 0.0000 mole wt.= 82.3780 g 3 species in reaction 1.000 H2O 1.000 Zn++ -1.000 H+ 9.8590 9.3898 8.9600 8.4895 8.0621 7.6720 7.3145 6.9859 * used van't Hoff equation to compute logKs ZnSO4 charge= 0 ion size= 0.0 A b= 0.0000 mole wt.= 161.4340 g 2 species in reaction 1.000 Zn++ 1.000 SO4-- -2.2788 -2.3264 -2.3700 -2.4177 -2.4611 -2.5007 -2.5370 -2.5704 * used van't Hoff equation to compute logKs -end- 1 free electron e- charge= -1 ion size= 0.0 A b= 0.0000 mole wt.= 0.0000 g 3 species in reaction .500 H2O -.250 O2(g) -1.000 H+ 23.071575 21.87565 20.7800 19.580675 18.491025 17.496625 16.5855 15.74765 -end- 57 minerals Al(OH)3(a) type= formula= Al(OH)3 mole vol.= 0.0000 cc mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 12.5778 11.6500 10.8000 9.8696 9.0242 8.2528 7.5459 6.8959 * used van't Hoff equation to compute logKs Albite type= formula= NaAlSi3O8 mole vol.= 0.0000 cc mole wt.= 262.2242 g 5 species in reaction 1.000 Al+++ -4.000 H2O 3.000 H4SiO4 1.000 Na+ -4.000 H+ 5.7891 5.1953 4.6631 4.0949 3.5927 3.1473 2.7511 2.3975 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Alunite type= formula= KAl3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 414.2225 g 5 species in reaction 3.000 Al+++ 6.000 H2O 1.000 K+ -6.000 H+ 2.000 SO4-- 1.9711 .2118 -1.4000 -3.1643 -4.7673 -6.2301 -7.5705 -8.8030 * used van't Hoff equation to compute logKs Anglesite type= formula= PbSO4 mole vol.= 0.0000 cc mole wt.= 303.2540 g 2 species in reaction 1.000 SO4-- 1.000 Pb++ -7.9342 -7.8590 -7.7900 -7.7145 -7.6459 -7.5833 -7.5260 -7.4733 * used van't Hoff equation to compute logKs Anhydrite type= formula= CaSO4 mole vol.= 0.0000 cc mole wt.= 136.1440 g 2 species in reaction 1.000 SO4-- 1.000 Ca++ -4.3661 -4.3343 -4.3608 -4.4566 -4.6102 -4.8109 -5.0503 -5.3216 * used analytic equation to compute logKs Anorthite type= formula= CaAl2Si2O8 mole vol.= 0.0000 cc mole wt.= 278.2116 g 4 species in reaction 2.000 Al+++ 2.000 H4SiO4 -8.000 H+ 1.000 Ca++ 30.5659 27.9704 25.6163 23.0679 20.7807 18.7193 16.8543 15.1609 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Aragonite type= formula= CaCO3 mole vol.= 0.0000 cc mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -8.2180 -8.2667 -8.3361 -8.4462 -8.5850 -8.7519 -8.9459 -9.1659 * used analytic equation to compute logKs Barite type= formula= BaSO4 mole vol.= 0.0000 cc mole wt.= 233.4040 g 2 species in reaction 1.000 Ba++ 1.000 SO4-- -10.4798 -10.1937 -9.9704 -9.7724 -9.6387 -9.5589 -9.5245 -9.5283 * used analytic equation to compute logKs Ca-Montmorillonite type= formula= Ca0.165Al2.33Si3.67O10(OH)2 mole vol.= 0.0000 cc mole wt.= 366.5655 g 5 species in reaction 2.330 Al+++ -2.680 H2O 3.670 H4SiO4 -7.320 H+ .165 Ca++ 10.5380 9.0857 7.7828 6.3897 5.1570 4.0620 3.0864 2.2145 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Calcite type= formula= CaCO3 mole vol.= 0.0000 cc mole wt.= 100.0911 g 2 species in reaction 1.000 CO3-- 1.000 Ca++ -8.3814 -8.4199 -8.4798 -8.5797 -8.7092 -8.8675 -9.0537 -9.2665 * used analytic equation to compute logKs Cd(OH)2 type= formula= Cd(OH)2 mole vol.= 0.0000 cc mole wt.= 146.4160 g 3 species in reaction 1.000 Cd++ 2.000 H2O -2.000 H+ 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 13.6500 * used van't Hoff equation to compute logKs CdSiO3 type= formula= CdSiO3 mole vol.= 0.0000 cc mole wt.= 188.4843 g 4 species in reaction 1.000 Cd++ -1.000 H2O 1.000 H4SiO4 -2.000 H+ 10.1756 9.5934 9.0600 8.4761 7.9456 7.4615 7.0179 6.6100 * used van't Hoff equation to compute logKs CdSO4 type= formula= CdSO4 mole vol.= 0.0000 cc mole wt.= 208.4640 g 2 species in reaction 1.000 Cd++ 1.000 SO4-- .8889 .3728 -.1000 -.6175 -1.0877 -1.5168 -1.9100 -2.2716 * used van't Hoff equation to compute logKs Celestite type= formula= SrSO4 mole vol.= 0.0000 cc mole wt.= 183.6840 g 2 species in reaction 1.000 Sr++ 1.000 SO4-- -6.7028 -6.6246 -6.6321 -6.6888 -6.7658 -6.8590 -6.9826 -7.1606 * used analytic equation to compute logKs Cerrusite type= formula= PbCO3 mole vol.= 0.0000 cc mole wt.= 267.2011 g 2 species in reaction 1.000 CO3-- 1.000 Pb++ -13.4560 -13.2859 -13.1300 -12.9594 -12.8043 -12.6628 -12.5332 -12.4140 * used van't Hoff equation to compute logKs Chalcedony type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -3.8681 -3.7028 -3.5513 -3.3855 -3.2349 -3.0974 -2.9715 -2.8556 * used analytic equation to compute logKs Chlorite(14A) type= formula= Mg5Al2Si3O10(OH)8 mole vol.= 0.0000 cc mole wt.= 555.8399 g 5 species in reaction 2.000 Al+++ 6.000 H2O 3.000 H4SiO4 5.000 Mg++ -16.000 H+ 78.5432 73.2392 68.3800 63.0610 58.2283 53.8181 49.7773 46.0613 * used van't Hoff equation to compute logKs Chrysotile type= formula= Mg3Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 277.1366 g 4 species in reaction 1.000 H2O 3.000 Mg++ 2.000 H4SiO4 -6.000 H+ 35.5729 33.8158 32.2011 30.4276 28.8105 27.3293 25.9673 24.7103 * used analytic equation to compute logKs Dolomite type= formula= CaMg(CO3)2 mole vol.= 0.0000 cc mole wt.= 184.4142 g 3 species in reaction 1.000 Mg++ 2.000 CO3-- 1.000 Ca++ -16.4570 -16.7873 -17.0900 -17.4213 -17.7223 -17.9970 -18.2487 -18.4801 * used van't Hoff equation to compute logKs Fe(OH)3(a) type= formula= Fe(OH)3 mole vol.= 0.0000 cc mole wt.= 106.8710 g 3 species in reaction 3.000 H2O 1.000 Fe+++ -3.000 H+ 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 4.8910 * used van't Hoff equation to compute logKs FeS(ppt) type= formula= FeS mole vol.= 0.0000 cc mole wt.= 87.9110 g 3 species in reaction 1.000 Fe++ 1.000 HS- -1.000 H+ -3.9150 -3.9150 -3.9150 -3.9150 -3.9150 -3.9150 -3.9150 -3.9150 * used van't Hoff equation to compute logKs Fluorite type= formula= CaF2 mole vol.= 0.0000 cc mole wt.= 78.0768 g 2 species in reaction 2.000 F- 1.000 Ca++ -10.9580 -10.7605 -10.5997 -10.4478 -10.3339 -10.2519 -10.1969 -10.1648 * used analytic equation to compute logKs Gibbsite type= formula= Al(OH)3 mole vol.= 0.0000 cc mole wt.= 78.0055 g 3 species in reaction 1.000 Al+++ 3.000 H2O -3.000 H+ 9.6396 8.8413 8.1100 7.3095 6.5822 5.9184 5.3103 4.7510 * used van't Hoff equation to compute logKs Goethite type= formula= FeOOH mole vol.= 0.0000 cc mole wt.= 88.8550 g 3 species in reaction 2.000 H2O 1.000 Fe+++ -3.000 H+ -.0286 -.5355 -1.0000 -1.5084 -1.9703 -2.3918 -2.7781 -3.1332 * used van't Hoff equation to compute logKs Gypsum type= formula= CaSO4:2H2O mole vol.= 0.0000 cc mole wt.= 172.1760 g 3 species in reaction 2.000 H2O 1.000 SO4-- 1.000 Ca++ -4.6166 -4.5876 -4.5809 -4.5976 -4.6367 -4.6940 -4.7665 -4.8515 * used analytic equation to compute logKs Halite type= formula= NaCl mole vol.= 0.0000 cc mole wt.= 58.4428 g 2 species in reaction 1.000 Cl- 1.000 Na+ 1.5204 1.5526 1.5820 1.6142 1.6435 1.6702 1.6947 1.7172 * used van't Hoff equation to compute logKs Hausmannite type= formula= Mn3O4 mole vol.= 0.0000 cc mole wt.= 228.8140 g 4 species in reaction 3.000 H2O -6.000 H+ .500 O2(aq) 3.000 Mn++ 20.2203 19.0563 17.9900 16.8228 15.7622 14.7944 13.9077 13.0922 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Hematite type= formula= Fe2O3 mole vol.= 0.0000 cc mole wt.= 159.6940 g 3 species in reaction 3.000 H2O 2.000 Fe+++ -6.000 H+ -1.9387 -3.0186 -4.0080 -5.0910 -6.0749 -6.9729 -7.7956 -8.5522 * used van't Hoff equation to compute logKs Hydroxyapatite type= formula= Ca5(PO4)3OH mole vol.= 0.0000 cc mole wt.= 502.3294 g 4 species in reaction 1.000 H2O 3.000 PO4--- -1.000 H+ 5.000 Ca++ -38.7439 -39.6390 -40.4590 -41.3566 -42.1721 -42.9164 -43.5983 -44.2253 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Illite type= formula= K0.6Mg0.25Al2.3Si3.5O10(OH)2 mole vol.= 0.0000 cc mole wt.= 383.9077 g 6 species in reaction 2.300 Al+++ -2.000 H2O 3.500 H4SiO4 .250 Mg++ .600 K+ -8.000 H+ 14.7797 13.2432 11.8628 10.3846 9.0740 7.9076 6.8662 5.9335 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Jarosite-K type= formula= KFe3(SO4)2(OH)6 mole vol.= 0.0000 cc mole wt.= 500.8190 g 5 species in reaction 6.000 H2O 1.000 K+ 3.000 Fe+++ -6.000 H+ 2.000 SO4-- -7.1115 -8.2067 -9.2100 -10.3082 -11.3061 -12.2167 -13.0510 -13.8183 * used van't Hoff equation to compute logKs K-feldspar type= formula= KAlSi3O8 mole vol.= 0.0000 cc mole wt.= 278.3364 g 5 species in reaction 1.000 Al+++ -4.000 H2O 3.000 H4SiO4 1.000 K+ -4.000 H+ 2.8878 2.4664 2.0921 1.6968 1.3516 1.0496 .7847 .5520 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components K-mica type= formula= KAl3Si3O10(OH)2 mole vol.= 0.0000 cc mole wt.= 398.3154 g 4 species in reaction 3.000 Al+++ 3.000 H4SiO4 1.000 K+ -10.000 H+ 16.6863 14.6075 12.7030 10.6183 8.7242 6.9957 5.4119 3.9555 * used van't Hoff equation to compute logKs Kaolinite type= formula= Al2Si2O5(OH)4 mole vol.= 0.0000 cc mole wt.= 258.1636 g 4 species in reaction 2.000 Al+++ 1.000 H2O 2.000 H4SiO4 -6.000 H+ 9.8031 8.5673 7.4350 6.1956 5.0695 4.0419 3.1003 2.2345 * used van't Hoff equation to compute logKs Mackinawite type= formula= FeS mole vol.= 0.0000 cc mole wt.= 87.9110 g 3 species in reaction 1.000 Fe++ 1.000 HS- -1.000 H+ -4.6480 -4.6480 -4.6480 -4.6480 -4.6480 -4.6480 -4.6480 -4.6480 * used van't Hoff equation to compute logKs Manganite type= formula= MnOOH mole vol.= 0.0000 cc mole wt.= 87.9460 g 4 species in reaction 1.500 H2O -2.000 H+ .250 O2(aq) 1.000 Mn++ 1.5594 2.7391 3.8200 5.0031 6.0781 7.0591 7.9579 8.7844 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Melanterite type= formula= FeSO4:7H2O mole vol.= 0.0000 cc mole wt.= 278.0230 g 3 species in reaction 1.000 Fe++ 7.000 H2O 1.000 SO4-- -2.5683 -2.3736 -2.2093 -2.0455 -1.9119 -1.8035 -1.7161 -1.6464 * used analytic equation to compute logKs Otavite type= formula= CdCO3 mole vol.= 0.0000 cc mole wt.= 172.4111 g 2 species in reaction 1.000 Cd++ 1.000 CO3-- -12.0987 -12.0994 -12.1000 -12.1007 -12.1013 -12.1018 -12.1023 -12.1028 * used van't Hoff equation to compute logKs Pb(OH)2 type= formula= Pb(OH)2 mole vol.= 0.0000 cc mole wt.= 241.2060 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 Pb++ 9.0885 8.5987 8.1500 7.6588 7.2125 6.8053 6.4321 6.0889 * used van't Hoff equation to compute logKs Pyrite type= formula= FeS2 mole vol.= 0.0000 cc mole wt.= 119.9750 g 4 species in reaction 1.000 Fe++ -1.000 H2O 2.000 HS- .500 O2(aq) -66.7984 -64.0432 -61.5190 -58.7560 -56.2456 -53.9547 -51.8556 -49.9254 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Pyrochroite type= formula= Mn(OH)2 mole vol.= 0.0000 cc mole wt.= 88.9540 g 3 species in reaction 2.000 H2O -2.000 H+ 1.000 Mn++ 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 15.2000 * used van't Hoff equation to compute logKs Pyrolusite type= formula= MnO2 mole vol.= 0.0000 cc mole wt.= 86.9380 g 4 species in reaction 1.000 H2O -2.000 H+ .500 O2(aq) 1.000 Mn++ -1.8133 -1.7333 -1.6600 -1.5798 -1.5069 -1.4404 -1.3794 -1.3234 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components Quartz type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -4.3822 -4.1725 -3.9804 -3.7701 -3.5790 -3.4047 -3.2449 -3.0980 * used analytic equation to compute logKs Rhodochrosite type= formula= MnCO3 mole vol.= 0.0000 cc mole wt.= 114.9491 g 2 species in reaction 1.000 CO3-- 1.000 Mn++ -11.0341 -11.0841 -11.1300 -11.1802 -11.2258 -11.2675 -11.3056 -11.3407 * used van't Hoff equation to compute logKs Sepiolite type= formula= Mg2Si3O7.5OH:3H2O mole vol.= 0.0000 cc mole wt.= 323.9329 g 4 species in reaction -.500 H2O 3.000 H4SiO4 2.000 Mg++ -4.000 H+ 16.4778 16.1032 15.7600 15.3843 15.0430 14.7315 14.4461 14.1836 * used van't Hoff equation to compute logKs Sepiolite(d) type= formula= Mg2Si3O7.5OH:3H2O mole vol.= 0.0000 cc mole wt.= 323.9329 g 4 species in reaction -.500 H2O 3.000 H4SiO4 2.000 Mg++ -4.000 H+ 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 18.6600 * used van't Hoff equation to compute logKs Siderite type= formula= FeCO3 mole vol.= 0.0000 cc mole wt.= 115.8581 g 2 species in reaction 1.000 Fe++ 1.000 CO3-- -10.7236 -10.8105 -10.8900 -10.9771 -11.0562 -11.1284 -11.1945 -11.2554 * used van't Hoff equation to compute logKs SiO2(a) type= formula= SiO2 mole vol.= 0.0000 cc mole wt.= 60.0843 g 2 species in reaction -2.000 H2O 1.000 H4SiO4 -2.9362 -2.8191 -2.7118 -2.5943 -2.4876 -2.3903 -2.3010 -2.2190 * used analytic equation to compute logKs Smithsonite type= formula= ZnCO3 mole vol.= 0.0000 cc mole wt.= 125.3811 g 2 species in reaction 1.000 CO3-- 1.000 Zn++ -9.7075 -9.8602 -10.0000 -10.1531 -10.2922 -10.4191 -10.5354 -10.6423 * used van't Hoff equation to compute logKs Sphalerite type= formula= ZnS mole vol.= 0.0000 cc mole wt.= 97.4340 g 3 species in reaction 1.000 HS- 1.000 Zn++ -1.000 H+ -12.1715 -11.8826 -11.6180 -11.3283 -11.0652 -10.8250 -10.6049 -10.4026 * used van't Hoff equation to compute logKs Strontianite type= formula= SrCO3 mole vol.= 0.0000 cc mole wt.= 147.6311 g 2 species in reaction 1.000 CO3-- 1.000 Sr++ -9.3407 -9.2806 -9.2705 -9.3137 -9.4068 -9.5408 -9.7087 -9.9044 * used analytic equation to compute logKs Sulfur type= formula= S mole vol.= 0.0000 cc mole wt.= 32.0640 g 4 species in reaction 1.000 HS- -1.000 H2O 1.000 H+ .500 O2(aq) -49.3937 -47.1397 -45.0997 -42.8981 -40.9305 -39.1662 -37.5796 -36.1494 * used van't Hoff equation to compute logKs * also used van't Hoff equation to compute logKs for a component of * this species that was swapped out for the real basis components * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components Talc type= formula= Mg3Si4O10(OH)2 mole vol.= 0.0000 cc mole wt.= 379.2892 g 4 species in reaction -4.000 H2O 4.000 H4SiO4 3.000 Mg++ -6.000 H+ 24.5086 22.8858 21.3990 19.7716 18.2929 16.9435 15.7072 14.5703 * used van't Hoff equation to compute logKs Vivianite type= formula= Fe3(PO4)2:8H2O mole vol.= 0.0000 cc mole wt.= 501.6166 g 3 species in reaction 3.000 Fe++ 8.000 H2O 2.000 PO4--- -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 -36.0000 * used van't Hoff equation to compute logKs Willemite type= formula= Zn2SiO4 mole vol.= 0.0000 cc mole wt.= 222.8243 g 3 species in reaction 1.000 H4SiO4 2.000 Zn++ -4.000 H+ 17.5687 16.4004 15.3300 14.1584 13.0939 12.1224 11.2323 10.4138 * used van't Hoff equation to compute logKs Witherite type= formula= BaCO3 mole vol.= 0.0000 cc mole wt.= 197.3511 g 2 species in reaction 1.000 CO3-- 1.000 Ba++ -8.7373 -8.6135 -8.5617 -8.5717 -8.6398 -8.7483 -8.8838 -9.0352 * used analytic equation to compute logKs Zn(OH)2(e) type= formula= Zn(OH)2 mole vol.= 0.0000 cc mole wt.= 99.3860 g 3 species in reaction 2.000 H2O 1.000 Zn++ -2.000 H+ 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 11.5000 * used van't Hoff equation to compute logKs -end- * Use TEdit to add solid solutions here globally, or add them locally * from the Solid Solutions... dialog in any of the GWB modeling apps. 0 solid solutions -end- 8 gases CH4(g) mole wt.= 16.0431 g chi= -537.779 1.54946 -.000927827 1.20861 -.00370814 3.33804e-6 Pcrit= 45.99 bar Tcrit= 190.56 K omega= .011 1 species in reaction 1.000 CH4 -2.6337 -2.7518 -2.8600 -2.9784 -3.0860 -3.1842 -3.2742 -3.3569 * used van't Hoff equation to compute logKs CO2(g) mole wt.= 44.0111 g chi= -1430.87 3.598 -.00227376 3.47644 -.0104247 8.46271e-6 Pcrit= 73.74 bar Tcrit= 304.12 K omega= .225 3 species in reaction -1.000 H2O 1.000 CO3-- 2.000 H+ -18.3155 -18.2032 -18.1487 -18.1440 -18.1922 -18.2827 -18.4075 -18.5610 * used analytic equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components H2(g) mole wt.= 2.0160 g chi= -12.5908 .259789 -7.2473e-5 .00471947 -2.69962e-5 2.15622e-8 Pcrit= 12.93 bar Tcrit= 32.98 K omega= -.217 1 species in reaction 1.000 H2 -3.0320 -3.0936 -3.1500 -3.2118 -3.2679 -3.3191 -3.3660 -3.4091 * used van't Hoff equation to compute logKs H2O(g) mole wt.= 18.0160 g chi= -6191.41 14.8528 -.00914267 -66.3326 .18277 -.00013274 Pcrit= 220.64 bar Tcrit= 647.14 K omega= .344 a=-.0109 b= 0.0 1 species in reaction 1.000 H2O 2.2160 1.8475 1.5100 1.1405 .8048 .4985 .2178 -.0403 * used van't Hoff equation to compute logKs H2S(g) mole wt.= 34.0800 g Pcrit= 89.63 bar Tcrit= 373.4 K omega= .090 2 species in reaction 1.000 HS- 1.000 H+ -8.0422 -7.9751 -7.9387 -7.9302 -7.9553 -8.0094 -8.0890 -8.1910 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components N2(g) mole wt.= 28.0134 g Pcrit= 33.98 bar Tcrit= 126.2 K omega= .037 1 species in reaction 1.000 N2 -3.1689 -3.2164 -3.2600 -3.3077 -3.3510 -3.3905 -3.4268 -3.4601 * used van't Hoff equation to compute logKs NH3(g) mole wt.= 17.0307 g Pcrit= 113.53 bar Tcrit= 405.4 K omega= .257 2 species in reaction 1.000 NH4+ -1.000 H+ 12.4022 11.6772 11.0142 10.2902 9.6340 9.0367 8.4911 7.9908 * used van't Hoff equation to compute logKs * also used analytic equation to compute logKs for a component of * this species that was swapped out for the real basis components O2(g) mole wt.= 32.0000 g Pcrit= 50.43 bar Tcrit= 154.58 K omega= .025 1 species in reaction 1.000 O2(aq) -2.8363 -2.9009 -2.9600 -3.0247 -3.0836 -3.1372 -3.1864 -3.2317 * used van't Hoff equation to compute logKs -end- 0 oxides -end- * * This is the end of the data input for GWB programs. The following is the datafile used to produce * this dataset: * * ******************************** phreeqc.dat ********************************** * SOLUTION_MASTER_SPECIES * # * #element species alk gfw_formula element_gfw * # * H H+ -1. H 1.008 * H(0) H2 0.0 H * H(1) H+ -1. 0.0 * E e- 0.0 0.0 0.0 * O H2O 0.0 O 16.00 * O(0) O2 0.0 O * O(-2) H2O 0.0 0.0 * Ca Ca+2 0.0 Ca 40.08 * Mg Mg+2 0.0 Mg 24.312 * Na Na+ 0.0 Na 22.9898 * K K+ 0.0 K 39.102 * Fe Fe+2 0.0 Fe 55.847 * Fe(+2) Fe+2 0.0 Fe * Fe(+3) Fe+3 -2.0 Fe * Mn Mn+2 0.0 Mn 54.938 * Mn(+2) Mn+2 0.0 Mn * Mn(+3) Mn+3 0.0 Mn * Al Al+3 0.0 Al 26.9815 * Ba Ba+2 0.0 Ba 137.34 * Sr Sr+2 0.0 Sr 87.62 * Si H4SiO4 0.0 SiO2 28.0843 * Cl Cl- 0.0 Cl 35.453 * C CO3-2 2.0 HCO3 12.0111 * C(+4) CO3-2 2.0 HCO3 * C(-4) CH4 0.0 CH4 * Alkalinity CO3-2 1.0 Ca0.5(CO3)0.5 50.05 * S SO4-2 0.0 SO4 32.064 * S(6) SO4-2 0.0 SO4 * S(-2) HS- 1.0 S * N NO3- 0.0 N 14.0067 * N(+5) NO3- 0.0 N * N(+3) NO2- 0.0 N * N(0) N2 0.0 N * N(-3) NH4+ 0.0 N * B H3BO3 0.0 B 10.81 * P PO4-3 2.0 P 30.9738 * F F- 0.0 F 18.9984 * Li Li+ 0.0 Li 6.939 * Br Br- 0.0 Br 79.904 * Zn Zn+2 0.0 Zn 65.37 * Cd Cd+2 0.0 Cd 112.4 * Pb Pb+2 0.0 Pb 207.19 * Cu Cu+2 0.0 Cu 63.546 * Cu(+2) Cu+2 0.0 Cu * Cu(+1) Cu+1 0.0 Cu * * SOLUTION_SPECIES * * H+ = H+ * log_k 0.000 * -gamma 9.0000 0.0000 * * e- = e- * log_k 0.000 * * H2O = H2O * log_k 0.000 * * Ca+2 = Ca+2 * log_k 0.000 * -gamma 5.0000 0.1650 * * Mg+2 = Mg+2 * log_k 0.000 * -gamma 5.5000 0.2000 * * Na+ = Na+ * log_k 0.000 * -gamma 4.0000 0.0750 * * K+ = K+ * log_k 0.000 * -gamma 3.5000 0.0150 * * Fe+2 = Fe+2 * log_k 0.000 * -gamma 6.0000 0.0000 * * Mn+2 = Mn+2 * log_k 0.000 * -gamma 6.0000 0.0000 * * Al+3 = Al+3 * log_k 0.000 * -gamma 9.0000 0.0000 * * Ba+2 = Ba+2 * log_k 0.000 * -gamma 5.0000 0.0000 * * Sr+2 = Sr+2 * log_k 0.000 * -gamma 5.2600 0.1210 * * H4SiO4 = H4SiO4 * log_k 0.000 * * Cl- = Cl- * log_k 0.000 * -gamma 3.5000 0.0150 * * CO3-2 = CO3-2 * log_k 0.000 * -gamma 5.4000 0.0000 * * SO4-2 = SO4-2 * log_k 0.000 * -gamma 5.0000 -0.0400 * * NO3- = NO3- * log_k 0.000 * -gamma 3.0000 0.0000 * * H3BO3 = H3BO3 * log_k 0.000 * * PO4-3 = PO4-3 * log_k 0.000 * -gamma 4.0000 0.0000 * * F- = F- * log_k 0.000 * -gamma 3.5000 0.0000 * * Li+ = Li+ * log_k 0.000 * -gamma 6.0000 0.0000 * * Br- = Br- * log_k 0.000 * -gamma 3.0000 0.0000 * * Zn+2 = Zn+2 * log_k 0.000 * -gamma 5.0000 0.0000 * * Cd+2 = Cd+2 * log_k 0.000 * * Pb+2 = Pb+2 * log_k 0.000 * * Cu+2 = Cu+2 * log_k 0.000 * -gamma 6.0000 0.0000 * * H2O = OH- + H+ * log_k -14.000 * delta_h 13.362 kcal * -analytic -283.971 -0.05069842 13323.0 102.24447 -1119669.0 * -gamma 3.5000 0.0000 * * 2 H2O = O2 + 4 H+ + 4 e- * log_k -86.08 * delta_h 134.79 kcal * * 2 H+ + 2 e- = H2 * log_k -3.15 * delta_h -1.759 kcal * * CO3-2 + H+ = HCO3- * log_k 10.329 * delta_h -3.561 kcal * -analytic 107.8871 0.03252849 -5151.79 -38.92561 563713.9 * -gamma 5.4000 0.0000 * * CO3-2 + 2 H+ = CO2 + H2O * log_k 16.681 * delta_h -5.738 kcal * -analytic 464.1965 0.09344813 -26986.16 -165.75951 2248628.9 * * CO3-2 + 10 H+ + 8 e- = CH4 + 3 H2O * log_k 41.071 * delta_h -61.039 kcal * * SO4-2 + H+ = HSO4- * log_k 1.988 * delta_h 3.85 kcal * -analytic -56.889 0.006473 2307.9 19.8858 0.0 * * HS- = S-2 + H+ * log_k -12.918 * delta_h 12.1 kcal * -gamma 5.0000 0.0000 * * SO4-2 + 9 H+ + 8 e- = HS- + 4 H2O * log_k 33.65 * delta_h -60.140 kcal * -gamma 3.5000 0.0000 * * HS- + H+ = H2S * log_k 6.994 * delta_h -5.300 kcal * -analytical -11.17 0.02386 3279.0 * * * NO3- + 2 H+ + 2 e- = NO2- + H2O * log_k 28.570 * delta_h -43.760 kcal * -gamma 3.0000 0.0000 * * 2 NO3- + 12 H+ + 10 e- = N2 + 6 H2O * log_k 207.080 * delta_h -312.130 kcal * * NH4+ = NH3 + H+ * log_k -9.252 * delta_h 12.48 kcal * -analytic 0.6322 -0.001225 -2835.76 * * NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O * log_k 119.077 * delta_h -187.055 kcal * -gamma 2.5000 0.0000 * * NH4+ + SO4-2 = NH4SO4- * log_k 1.11 * * H3BO3 = H2BO3- + H+ * log_k -9.240 * delta_h 3.224 kcal * # -analytical 24.3919 0.012078 -1343.9 -13.2258 * * H3BO3 + F- = BF(OH)3- * log_k -0.400 * delta_h 1.850 kcal * * H3BO3 + 2 F- + H+ = BF2(OH)2- + H2O * log_k 7.63 * delta_h 1.618 kcal * * H3BO3 + 2 H+ + 3 F- = BF3OH- + 2 H2O * log_k 13.67 * delta_h -1.614 kcal * * H3BO3 + 3 H+ + 4 F- = BF4- + 3 H2O * log_k 20.28 * delta_h -1.846 kcal * * PO4-3 + H+ = HPO4-2 * log_k 12.346 * delta_h -3.530 kcal * -gamma 4.0000 0.0000 * * PO4-3 + 2 H+ = H2PO4- * log_k 19.553 * delta_h -4.520 kcal * -gamma 4.5000 0.0000 * * H+ + F- = HF * log_k 3.18 * delta_h 3.18 kcal * -analytic -2.033 0.012645 429.01 * * H+ + 2 F- = HF2- * log_k 3.760 * delta_h 4.550 kcal * * Ca+2 + H2O = CaOH+ + H+ * log_k -12.780 * * Ca+2 + CO3-2 = CaCO3 * log_k 3.224 * delta_h 3.545 kcal * -analytic -1228.732 -0.299440 35512.75 485.818 * * Ca+2 + CO3-2 + H+ = CaHCO3+ * log_k 11.435 * delta_h -0.871 kcal * -analytic 1317.0071 0.34546894 -39916.84 -517.70761 563713.9 * -gamma 5.4000 0.0000 * * Ca+2 + SO4-2 = CaSO4 * log_k 2.300 * delta_h 1.650 kcal * * Ca+2 + HSO4- = CaHSO4+ * log_k 1.08 * * Ca+2 + PO4-3 = CaPO4- * log_k 6.459 * delta_h 3.100 kcal * * Ca+2 + HPO4-2 = CaHPO4 * log_k 2.739 * delta_h 3.3 kcal * * Ca+2 + H2PO4- = CaH2PO4+ * log_k 1.408 * delta_h 3.4 kcal * * Ca+2 + F- = CaF+ * log_k 0.940 * delta_h 4.120 kcal * * Mg+2 + H2O = MgOH+ + H+ * log_k -11.440 * delta_h 15.952 kcal * * Mg+2 + CO3-2 = MgCO3 * log_k 2.98 * delta_h 2.713 kcal * -analytic 0.9910 0.00667 * * Mg+2 + H+ + CO3-2 = MgHCO3+ * log_k 11.399 * delta_h -2.771 kcal * -analytic 48.6721 0.03252849 -2614.335 -18.00263 563713.9 * * Mg+2 + SO4-2 = MgSO4 * log_k 2.370 * delta_h 4.550 kcal * * Mg+2 + PO4-3 = MgPO4- * log_k 6.589 * delta_h 3.100 kcal * * Mg+2 + HPO4-2 = MgHPO4 * log_k 2.87 * delta_h 3.3 kcal * * Mg+2 + H2PO4- = MgH2PO4+ * log_k 1.513 * delta_h 3.4 kcal * * Mg+2 + F- = MgF+ * log_k 1.820 * delta_h 3.200 kcal * * Na+ + H2O = NaOH + H+ * log_k -14.180 * * Na+ + CO3-2 = NaCO3- * log_k 1.270 * delta_h 8.910 kcal * * Na+ + HCO3- = NaHCO3 * log_k -0.25 * * Na+ + SO4-2 = NaSO4- * log_k 0.700 * delta_h 1.120 kcal * * Na+ + HPO4-2 = NaHPO4- * log_k 0.29 * * Na+ + F- = NaF * log_k -0.240 * * K+ + H2O = KOH + H+ * log_k -14.460 * * K+ + SO4-2 = KSO4- * log_k 0.850 * delta_h 2.250 kcal * -analytical 3.106 0.0 -673.6 * * * K+ + HPO4-2 = KHPO4- * log_k 0.29 * * Fe+2 + H2O = FeOH+ + H+ * log_k -9.500 * delta_h 13.200 kcal * * Fe+2 + Cl- = FeCl+ * log_k 0.140 * * Fe+2 + CO3-2 = FeCO3 * log_k 4.380 * * Fe+2 + HCO3- = FeHCO3+ * log_k 2.0 * * Fe+2 + SO4-2 = FeSO4 * log_k 2.250 * delta_h 3.230 kcal * * Fe+2 + HSO4- = FeHSO4+ * log_k 1.08 * * Fe+2 + 2HS- = Fe(HS)2 * log_k 8.95 * * Fe+2 + 3HS- = Fe(HS)3- * log_k 10.987 * * Fe+2 + HPO4-2 = FeHPO4 * log_k 3.6 * * Fe+2 + H2PO4- = FeH2PO4+ * log_k 2.7 * * Fe+2 + F- = FeF+ * log_k 1.000 * * Fe+2 = Fe+3 + e- * log_k -13.020 * delta_h 9.680 kcal * -gamma 9.0000 0.0000 * * Fe+3 + H2O = FeOH+2 + H+ * log_k -2.19 * delta_h 10.4 kcal * * Fe+3 + 2 H2O = Fe(OH)2+ + 2 H+ * log_k -5.67 * delta_h 17.1 kcal * * Fe+3 + 3 H2O = Fe(OH)3 + 3 H+ * log_k -12.56 * delta_h 24.8 kcal * * Fe+3 + 4 H2O = Fe(OH)4- + 4 H+ * log_k -21.6 * delta_h 31.9 kcal * * 2 Fe+3 + 2 H2O = Fe2(OH)2+4 + 2 H+ * log_k -2.95 * delta_h 13.5 kcal * * 3 Fe+3 + 4 H2O = Fe3(OH)4+5 + 4 H+ * log_k -6.3 * delta_h 14.3 kcal * * Fe+3 + Cl- = FeCl+2 * log_k 1.48 * delta_h 5.6 kcal * * Fe+3 + 2 Cl- = FeCl2+ * log_k 2.13 * * Fe+3 + 3 Cl- = FeCl3 * log_k 1.13 * * Fe+3 + SO4-2 = FeSO4+ * log_k 4.04 * delta_h 3.91 kcal * * Fe+3 + HSO4- = FeHSO4+2 * log_k 2.48 * * Fe+3 + 2 SO4-2 = Fe(SO4)2- * log_k 5.38 * delta_h 4.60 kcal * * Fe+3 + HPO4-2 = FeHPO4+ * log_k 5.43 * delta_h 5.76 kcal * * Fe+3 + H2PO4- = FeH2PO4+2 * log_k 5.43 * * Fe+3 + F- = FeF+2 * log_k 6.2 * delta_h 2.7 kcal * * Fe+3 + 2 F- = FeF2+ * log_k 10.8 * delta_h 4.8 kcal * * Fe+3 + 3 F- = FeF3 * log_k 14.0 * delta_h 5.4 kcal * * Mn+2 + H2O = MnOH+ + H+ * log_k -10.590 * delta_h 14.400 kcal * * Mn+2 + Cl- = MnCl+ * log_k 0.610 * * Mn+2 + 2 Cl- = MnCl2 * log_k 0.250 * * Mn+2 + 3 Cl- = MnCl3- * log_k -0.310 * * Mn+2 + CO3-2 = MnCO3 * log_k 4.900 * * Mn+2 + HCO3- = MnHCO3+ * log_k 1.95 * * Mn+2 + SO4-2 = MnSO4 * log_k 2.250 * delta_h 3.370 kcal * * Mn+2 + 2 NO3- = Mn(NO3)2 * log_k 0.600 * delta_h -0.396 kcal * * Mn+2 + F- = MnF+ * log_k 0.840 * * Mn+2 = Mn+3 + e- * log_k -25.510 * delta_h 25.800 kcal * * Al+3 + H2O = AlOH+2 + H+ * log_k -5.00 * delta_h 11.49 kcal * -analytic -38.253 0.0 -656.27 14.327 * * Al+3 + 2 H2O = Al(OH)2+ + 2 H+ * log_k -10.1 * delta_h 26.90 kcal * -analytic 88.500 0.0 -9391.6 -27.121 * * Al+3 + 3 H2O = Al(OH)3 + 3 H+ * log_k -16.9 * delta_h 39.89 kcal * -analytic 226.374 0.0 -18247.8 -73.597 * * Al+3 + 4 H2O = Al(OH)4- + 4 H+ * log_k -22.7 * delta_h 42.30 kcal * -analytic 51.578 0.0 -11168.9 -14.865 * * Al+3 + SO4-2 = AlSO4+ * log_k 3.5 * delta_h 2.29 kcal * * Al+3 + 2SO4-2 = Al(SO4)2- * log_k 5.0 * delta_h 3.11 kcal * * Al+3 + HSO4- = AlHSO4+2 * log_k 0.46 * * Al+3 + F- = AlF+2 * log_k 7.000 * delta_h 1.060 kcal * * Al+3 + 2 F- = AlF2+ * log_k 12.700 * delta_h 1.980 kcal * * Al+3 + 3 F- = AlF3 * log_k 16.800 * delta_h 2.160 kcal * * Al+3 + 4 F- = AlF4- * log_k 19.400 * delta_h 2.200 kcal * * Al+3 + 5 F- = AlF5-2 * log_k 20.600 * delta_h 1.840 kcal * * Al+3 + 6 F- = AlF6-3 * log_k 20.600 * delta_h -1.670 kcal * * H4SiO4 = H3SiO4- + H+ * log_k -9.83 * delta_h 6.12 kcal * -analytic -302.3724 -0.050698 15669.69 108.18466 -1119669.0 * * H4SiO4 = H2SiO4-2 + 2 H+ * log_k -23.0 * delta_h 17.6 kcal * -analytic -294.0184 -0.072650 11204.49 108.18466 -1119669.0 * * H4SiO4 + 4 H+ + 6 F- = SiF6-2 + 4 H2O * log_k 30.180 * delta_h -16.260 kcal * * Ba+2 + H2O = BaOH+ + H+ * log_k -13.470 * * Ba+2 + CO3-2 = BaCO3 * log_k 2.71 * delta_h 3.55 kcal * -analytic 0.113 0.008721 * * Ba+2 + HCO3- = BaHCO3+ * log_k 0.982 * delta_h 5.56 kcal * -analytical -3.0938 0.013669 0.0 0.0 0.0 * * Ba+2 + SO4-2 = BaSO4 * log_k 2.700 * * Sr+2 + H2O = SrOH+ + H+ * log_k -13.290 * -gamma 5.0000 0.0000 * * Sr+2 + CO3-2 + H+ = SrHCO3+ * log_k 11.509 * delta_h 2.489 kcal * -analytic 104.6391 0.04739549 -5151.79 -38.92561 563713.9 * -gamma 5.4000 0.0000 * * Sr+2 + CO3-2 = SrCO3 * log_k 2.81 * delta_h 5.22 kcal * -analytic -1.019 0.012826 * * Sr+2 + SO4-2 = SrSO4 * log_k 2.290 * delta_h 2.080 kcal * * Li+ + H2O = LiOH + H+ * log_k -13.640 * * Li+ + SO4-2 = LiSO4- * log_k 0.640 * * Cu+2 + e- = Cu+ * log_k 2.720 * delta_h 1.650 kcal * -gamma 2.5000 0.0000 * * Cu+2 + H2O = CuOH+ + H+ * log_k -8.000 * -gamma 4.0000 0.0000 * * Cu+2 + 2 H2O = Cu(OH)2 + 2 H+ * log_k -13.680 * * Cu+2 + 3 H2O = Cu(OH)3- + 3 H+ * log_k -26.900 * * Cu+2 + 4 H2O = Cu(OH)4-2 + 4 H+ * log_k -39.600 * * Cu+2 + SO4-2 = CuSO4 * log_k 2.310 * delta_h 1.220 kcal * * Zn+2 + H2O = ZnOH+ + H+ * log_k -8.96 * delta_h 13.4 kcal * * Zn+2 + 2 H2O = Zn(OH)2 + 2 H+ * log_k -16.900 * * Zn+2 + 3 H2O = Zn(OH)3- + 3 H+ * log_k -28.400 * * Zn+2 + 4 H2O = Zn(OH)4-2 + 4 H+ * log_k -41.200 * * Zn+2 + Cl- = ZnCl+ * log_k 0.43 * delta_h 7.79 kcal * * Zn+2 + 2 Cl- = ZnCl2 * log_k 0.45 * delta_h 8.5 kcal * * Zn+2 + 3Cl- = ZnCl3- * log_k 0.5 * delta_h 9.56 kcal * * Zn+2 + 4Cl- = ZnCl4-2 * log_k 0.2 * delta_h 10.96 kcal * * Zn+2 + CO3-2 = ZnCO3 * log_k 5.3 * * Zn+2 + 2CO3-2 = Zn(CO3)2-2 * log_k 9.63 * * Zn+2 + HCO3- = ZnHCO3+ * log_k 2.1 * * Zn+2 + SO4-2 = ZnSO4 * log_k 2.37 * delta_h 1.36 kcal * * Zn+2 + 2SO4-2 = Zn(SO4)2-2 * log_k 3.28 * * Cd+2 + H2O = CdOH+ + H+ * log_k -10.080 * delta_h 13.1 kcal * * Cd+2 + 2 H2O = Cd(OH)2 + 2 H+ * log_k -20.350 * * Cd+2 + 3 H2O = Cd(OH)3- + 3 H+ * log_k -33.300 * * Cd+2 + 4 H2O = Cd(OH)4-2 + 4 H+ * log_k -47.350 * * Cd+2 + Cl- = CdCl+ * log_k 1.980 * delta_h 0.59 kcal * * Cd+2 + 2 Cl- = CdCl2 * log_k 2.600 * delta_h 1.24 kcal * * Cd+2 + 3 Cl- = CdCl3- * log_k 2.400 * delta_h 3.9 kcal * * Cd+2 + CO3-2 = CdCO3 * log_k 2.9 * * Cd+2 + 2CO3-2 = Cd(CO3)2-2 * log_k 6.4 * * Cd+2 + HCO3- = CdHCO3+ * log_k 1.5 * * Cd+2 + SO4-2 = CdSO4 * log_k 2.460 * delta_h 1.08 kcal * * Cd+2 + 2SO4-2 = Cd(SO4)2-2 * log_k 3.5 * * Pb+2 + H2O = PbOH+ + H+ * log_k -7.710 * * Pb+2 + 2 H2O = Pb(OH)2 + 2 H+ * log_k -17.120 * * Pb+2 + 3 H2O = Pb(OH)3- + 3 H+ * log_k -28.060 * * Pb+2 + 4 H2O = Pb(OH)4-2 + 4 H+ * log_k -39.700 * * 2 Pb+2 + H2O = Pb2OH+3 + H+ * log_k -6.360 * * Pb+2 + Cl- = PbCl+ * log_k 1.600 * delta_h 4.38 kcal * * Pb+2 + 2 Cl- = PbCl2 * log_k 1.800 * delta_h 1.08 kcal * * Pb+2 + 3 Cl- = PbCl3- * log_k 1.700 * delta_h 2.17 kcal * * Pb+2 + 4 Cl- = PbCl4-2 * log_k 1.380 * delta_h 3.53 kcal * * Pb+2 + CO3-2 = PbCO3 * log_k 7.240 * * Pb+2 + 2 CO3-2 = Pb(CO3)2-2 * log_k 10.640 * * Pb+2 + HCO3- = PbHCO3+ * log_k 2.9 * * Pb+2 + SO4-2 = PbSO4 * log_k 2.750 * * Pb+2 + 2 SO4-2 = Pb(SO4)2-2 * log_k 3.470 * * Pb+2 + NO3- = PbNO3+ * log_k 1.170 * * PHASES * * Calcite * CaCO3 = CO3-2 + Ca+2 * log_k -8.480 * delta_h -2.297 kcal * -analytic -171.9065 -0.077993 2839.319 71.595 * * Aragonite * CaCO3 = CO3-2 + Ca+2 * log_k -8.336 * delta_h -2.589 kcal * -analytic -171.9773 -0.077993 2903.293 71.595 * * Dolomite * CaMg(CO3)2 = Ca+2 + Mg+2 + 2 CO3-2 * log_k -17.090 * delta_h -9.436 kcal * * Siderite * FeCO3 = Fe+2 + CO3-2 * log_k -10.890 * delta_h -2.480 kcal * * Rhodochrosite * MnCO3 = Mn+2 + CO3-2 * log_k -11.130 * delta_h -1.430 kcal * * Strontianite * SrCO3 = Sr+2 + CO3-2 * log_k -9.271 * delta_h -0.400 kcal * -analytic 155.0305 0.0 -7239.594 -56.58638 * * Witherite * BaCO3 = Ba+2 + CO3-2 * log_k -8.562 * delta_h 0.703 kcal * -analytic 607.642 0.121098 -20011.25 -236.4948 * * Gypsum * CaSO4:2H2O = Ca+2 + SO4-2 + 2 H2O * log_k -4.580 * delta_h -0.109 kcal * -analytic 68.2401 0.0 -3221.51 -25.0627 * * Anhydrite * CaSO4 = Ca+2 + SO4-2 * log_k -4.360 * delta_h -1.710 kcal * -analytic 197.52 0.0 -8669.8 -69.835 * * Celestite * SrSO4 = Sr+2 + SO4-2 * log_k -6.630 * delta_h -1.037 kcal * -analytic -14805.9622 -2.4660924 756968.533 5436.3588 -40553604.0 * * Barite * BaSO4 = Ba+2 + SO4-2 * log_k -9.970 * delta_h 6.350 kcal * -analytic 136.035 0.0 -7680.41 -48.595 * * Hydroxyapatite * Ca5(PO4)3OH + 4 H+ = H2O + 3 HPO4-2 + 5 Ca+2 * log_k -3.421 * delta_h -36.155 kcal * * Fluorite * CaF2 = Ca+2 + 2 F- * log_k -10.600 * delta_h 4.690 kcal * -analytic 66.348 0.0 -4298.2 -25.271 * * SiO2(a) * SiO2 + 2 H2O = H4SiO4 * log_k -2.710 * delta_h 3.340 kcal * -analytic -0.26 0.0 -731.0 * * Chalcedony * SiO2 + 2 H2O = H4SiO4 * log_k -3.550 * delta_h 4.720 kcal * -analytic -0.09 0.0 -1032.0 * * Quartz * SiO2 + 2 H2O = H4SiO4 * log_k -3.980 * delta_h 5.990 kcal * -analytic 0.41 0.0 -1309.0 * * Gibbsite * Al(OH)3 + 3 H+ = Al+3 + 3 H2O * log_k 8.110 * delta_h -22.800 kcal * * Al(OH)3(a) * Al(OH)3 + 3 H+ = Al+3 + 3 H2O * log_k 10.800 * delta_h -26.500 kcal * * Kaolinite * Al2Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 2 Al+3 * log_k 7.435 * delta_h -35.300 kcal * * Albite * NaAlSi3O8 + 8 H2O = Na+ + Al(OH)4- + 3 H4SiO4 * log_k -18.002 * delta_h 25.896 kcal * * Anorthite * CaAl2Si2O8 + 8 H2O = Ca+2 + 2 Al(OH)4- + 2 H4SiO4 * log_k -19.714 * delta_h 11.580 kcal * * K-feldspar * KAlSi3O8 + 8 H2O = K+ + Al(OH)4- + 3 H4SiO4 * log_k -20.573 * delta_h 30.820 kcal * * K-mica * KAl3Si3O10(OH)2 + 10 H+ = K+ + 3 Al+3 + 3 H4SiO4 * log_k 12.703 * delta_h -59.376 kcal * * Chlorite(14A) * Mg5Al2Si3O10(OH)8 + 16H+ = 5Mg+2 + 2Al+3 + 3H4SiO4 + 6H2O * log_k 68.38 * delta_h -151.494 kcal * * Ca-Montmorillonite * Ca0.165Al2.33Si3.67O10(OH)2 + 12 H2O = 0.165Ca+2 + 2.33 Al(OH)4- + 3.67 H4SiO4 + 2 H+ * log_k -45.027 * delta_h 58.373 kcal * * Talc * Mg3Si4O10(OH)2 + 4 H2O + 6 H+ = 3 Mg+2 + 4 H4SiO4 * log_k 21.399 * delta_h -46.352 kcal * * Illite * K0.6Mg0.25Al2.3Si3.5O10(OH)2 + 11.2H2O = 0.6K+ + 0.25Mg+2 + 2.3Al(OH)4- + 3.5H4SiO4 + 1.2H+ * log_k -40.267 * delta_h 54.684 kcal * * Chrysotile * Mg3Si2O5(OH)4 + 6 H+ = H2O + 2 H4SiO4 + 3 Mg+2 * log_k 32.200 * delta_h -46.800 kcal * -analytic 13.248 0.0 10217.1 -6.1894 * * Sepiolite * Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 * log_k 15.760 * delta_h -10.700 kcal * * Sepiolite(d) * Mg2Si3O7.5OH:3H2O + 4 H+ + 0.5H2O = 2 Mg+2 + 3 H4SiO4 * log_k 18.660 * * Hematite * Fe2O3 + 6 H+ = 2 Fe+3 + 3 H2O * log_k -4.008 * delta_h -30.845 kcal * * Goethite * FeOOH + 3 H+ = Fe+3 + 2 H2O * log_k -1.000 * delta_h -14.48 kcal * * Fe(OH)3(a) * Fe(OH)3 + 3 H+ = Fe+3 + 3 H2O * log_k 4.891 * * Pyrite * FeS2 + 2 H+ + 2 e- = Fe+2 + 2 HS- * log_k -18.479 * delta_h 11.300 kcal * * FeS(ppt) * FeS + H+ = Fe+2 + HS- * log_k -3.915 * * Mackinawite * FeS + H+ = Fe+2 + HS- * log_k -4.648 * * Sulfur * S + 2H+ + 2e- = H2S * log_k 4.882 * delta_h -9.5 kcal * * Vivianite * Fe3(PO4)2:8H2O = 3 Fe+2 + 2 PO4-3 + 8 H2O * log_k -36.000 * * Pyrolusite * MnO2 + 4 H+ + 2 e- = Mn+2 + 2 H2O * log_k 41.380 * delta_h -65.110 kcal * * Hausmannite * Mn3O4 + 8 H+ + 2 e- = 3 Mn+2 + 4 H2O * log_k 61.030 * delta_h -100.640 kcal * * Manganite * MnOOH + 3 H+ + e- = Mn+2 + 2 H2O * log_k 25.340 * * Pyrochroite * Mn(OH)2 + 2 H+ = Mn+2 + 2 H2O * log_k 15.200 * * Halite * NaCl = Na+ + Cl- * log_k 1.582 * delta_h 0.918 kcal * * CO2(g) * CO2 = CO2 * log_k -1.468 * delta_h -4.776 kcal * -analytic 108.3865 0.01985076 -6919.53 -40.45154 669365.0 * * O2(g) * O2 = O2 * log_k -2.960 * delta_h -1.844 kcal * * H2(g) * H2 = H2 * log_k -3.150 * delta_h -1.759 kcal * * H2O(g) * H2O = H2O * log_k 1.51 * delta_h -44.03 kJ * # Stumm and Morgan, from NBS and Robie, Hemmingway, and Fischer (1978) * * N2(g) * N2 = N2 * log_k -3.260 * delta_h -1.358 kcal * * H2S(g) * H2S = H2S * log_k -0.997 * delta_h -4.570 kcal * * CH4(g) * CH4 = CH4 * log_k -2.860 * delta_h -3.373 kcal * * NH3(g) * NH3 = NH3 * log_k 1.770 * delta_h -8.170 kcal * * Melanterite * FeSO4:7H2O = 7 H2O + Fe+2 + SO4-2 * log_k -2.209 * delta_h 4.910 kcal * -analytic 1.447 -0.004153 0.0 0.0 -214949.0 * * Alunite * KAl3(SO4)2(OH)6 + 6 H+ = K+ + 3 Al+3 + 2 SO4-2 + 6H2O * log_k -1.400 * delta_h -50.250 kcal * * Jarosite-K * KFe3(SO4)2(OH)6 + 6 H+ = 3 Fe+3 + 6 H2O + K+ + 2 SO4-2 * log_k -9.210 * delta_h -31.280 kcal * * Zn(OH)2(e) * Zn(OH)2 + 2 H+ = Zn+2 + 2 H2O * log_k 11.50 * * Smithsonite * ZnCO3 = Zn+2 + CO3-2 * log_k -10.000 * delta_h -4.36 kcal * * Sphalerite * ZnS + H+ = Zn+2 + HS- * log_k -11.618 * delta_h 8.250 kcal * * Willemite 289 * Zn2SiO4 + 4H+ = 2Zn+2 + H4SiO4 * log_k 15.33 * delta_h -33.37 kcal * * Cd(OH)2 * Cd(OH)2 + 2 H+ = Cd+2 + 2 H2O * log_k 13.650 * * Otavite 315 * CdCO3 = Cd+2 + CO3-2 * log_k -12.1 * delta_h -0.019 kcal * * CdSiO3 328 * CdSiO3 + H2O + 2H+ = Cd+2 + H4SiO4 * log_k 9.06 * delta_h -16.63 kcal * * CdSO4 329 * CdSO4 = Cd+2 + SO4-2 * log_k -0.1 * delta_h -14.74 kcal * * Cerrusite 365 * PbCO3 = Pb+2 + CO3-2 * log_k -13.13 * delta_h 4.86 kcal * * Anglesite 384 * PbSO4 = Pb+2 + SO4-2 * log_k -7.79 * delta_h 2.15 kcal * * Pb(OH)2 389 * Pb(OH)2 + 2H+ = Pb+2 + 2H2O * log_k 8.15 * delta_h -13.99 kcal * * EXCHANGE_MASTER_SPECIES * X X- * EXCHANGE_SPECIES * X- = X- * log_k 0.0 * * Na+ + X- = NaX * log_k 0.0 * -gamma 4.0 0.075 * * K+ + X- = KX * log_k 0.7 * -gamma 3.5 0.015 * delta_h -4.3 # Jardine & Sparks, 1984 * * Li+ + X- = LiX * log_k -0.08 * -gamma 6.0 0.0 * delta_h 1.4 # Merriam & Thomas, 1956 * * NH4+ + X- = NH4X * log_k 0.6 * -gamma 2.5 0.0 * delta_h -2.4 # Laudelout et al., 1968 * * Ca+2 + 2X- = CaX2 * log_k 0.8 * -gamma 5.0 0.165 * delta_h 7.2 # Van Bladel & Gheyl, 1980 * * Mg+2 + 2X- = MgX2 * log_k 0.6 * -gamma 5.5 0.2 * delta_h 7.4 # Laudelout et al., 1968 * * Sr+2 + 2X- = SrX2 * log_k 0.91 * -gamma 5.26 0.121 * delta_h 5.5 # Laudelout et al., 1968 * * Ba+2 + 2X- = BaX2 * log_k 0.91 * -gamma 5.0 0.0 * delta_h 4.5 # Laudelout et al., 1968 * * Mn+2 + 2X- = MnX2 * log_k 0.52 * -gamma 6.0 0.0 * * Fe+2 + 2X- = FeX2 * log_k 0.44 * -gamma 6.0 0.0 * * Cu+2 + 2X- = CuX2 * log_k 0.6 * -gamma 6.0 0.0 * * Zn+2 + 2X- = ZnX2 * log_k 0.8 * -gamma 5.0 0.0 * * Cd+2 + 2X- = CdX2 * log_k 0.8 * * Pb+2 + 2X- = PbX2 * log_k 1.05 * * Al+3 + 3X- = AlX3 * log_k 0.41 * -gamma 9.0 0.0 * * AlOH+2 + 2X- = AlOHX2 * log_k 0.89 * -gamma 0.0 0.0 * SURFACE_MASTER_SPECIES * Hfo_s Hfo_sOH * Hfo_w Hfo_wOH * SURFACE_SPECIES * # All surface data from * # Dzombak and Morel, 1990 * # * # * # Acid-base data from table 5.7 * # * # strong binding site--Hfo_s, * * Hfo_sOH = Hfo_sOH * log_k 0.0 * * Hfo_sOH + H+ = Hfo_sOH2+ * log_k 7.29 # = pKa1,int * * Hfo_sOH = Hfo_sO- + H+ * log_k -8.93 # = -pKa2,int * * # weak binding site--Hfo_w * * Hfo_wOH = Hfo_wOH * log_k 0.0 * * Hfo_wOH + H+ = Hfo_wOH2+ * log_k 7.29 # = pKa1,int * * Hfo_wOH = Hfo_wO- + H+ * log_k -8.93 # = -pKa2,int * * ############################################### * # CATIONS # * ############################################### * # * # Cations from table 10.1 or 10.5 * # * # Calcium * Hfo_sOH + Ca+2 = Hfo_sOHCa+2 * log_k 4.97 * * Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+ * log_k -5.85 * # Strontium * Hfo_sOH + Sr+2 = Hfo_sOHSr+2 * log_k 5.01 * * Hfo_wOH + Sr+2 = Hfo_wOSr+ + H+ * log_k -6.58 * * Hfo_wOH + Sr+2 + H2O = Hfo_wOSrOH + 2H+ * log_k -17.60 * # Barium * Hfo_sOH + Ba+2 = Hfo_sOHBa+2 * log_k 5.46 * * Hfo_wOH + Ba+2 = Hfo_wOBa+ + H+ * log_k -7.2 # table 10.5 * # * # Cations from table 10.2 * # * # Cadmium * Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+ * log_k 0.47 * * Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+ * log_k -2.91 * # Zinc * Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+ * log_k 0.99 * * Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+ * log_k -1.99 * # Copper * Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+ * log_k 2.89 * * Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+ * log_k 0.6 # table 10.5 * # Lead * Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+ * log_k 4.65 * * Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+ * log_k 0.3 # table 10.5 * # * # Derived constants table 10.5 * # * # Magnesium * Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+ * log_k -4.6 * # Manganese * Hfo_sOH + Mn+2 = Hfo_sOMn+ + H+ * log_k -0.4 # table 10.5 * * Hfo_wOH + Mn+2 = Hfo_wOMn+ + H+ * log_k -3.5 # table 10.5 * # Iron * # Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ * # log_k 0.7 # LFER using table 10.5 * * # Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ * # log_k -2.5 # LFER using table 10.5 * * # Iron, strong site: Appelo, Van der Weiden, Tournassat & Charlet, subm. * Hfo_sOH + Fe+2 = Hfo_sOFe+ + H+ * log_k -0.95 * # Iron, weak site: Liger et al., GCA 63, 2939, re-optimized for D&M * Hfo_wOH + Fe+2 = Hfo_wOFe+ + H+ * log_k -2.98 * * Hfo_wOH + Fe+2 + H2O = Hfo_wOFeOH + 2H+ * log_k -11.55 * * ############################################### * # ANIONS # * ############################################### * # * # Anions from table 10.6 * # * # Phosphate * Hfo_wOH + PO4-3 + 3H+ = Hfo_wH2PO4 + H2O * log_k 31.29 * * Hfo_wOH + PO4-3 + 2H+ = Hfo_wHPO4- + H2O * log_k 25.39 * * Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O * log_k 17.72 * # * # Anions from table 10.7 * # * # Borate * Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O * log_k 0.62 * # * # Anions from table 10.8 * # * # Sulfate * Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O * log_k 7.78 * * Hfo_wOH + SO4-2 = Hfo_wOHSO4-2 * log_k 0.79 * # * # Derived constants table 10.10 * # * Hfo_wOH + F- + H+ = Hfo_wF + H2O * log_k 8.7 * * Hfo_wOH + F- = Hfo_wOHF- * log_k 1.6 * # * # Carbonate: Van Geen et al., 1994 reoptimized for HFO * # 0.15 g HFO/L has 0.344 mM sites == 2 g of Van Geen's Goethite/L * # * # Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O * # log_k 12.56 * # * # Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O * # log_k 20.62 * * # 9/19/96 * # Added analytical expression for H2S, NH3, KSO4. * # Added species CaHSO4+. * # Added delta H for Goethite. * * RATES * * ########### * #K-feldspar * ########### * # * # Sverdrup, H.U., 1990, The kinetics of base cation release due to * # chemical weathering: Lund University Press, Lund, 246 p. * # * # Example of KINETICS data block for K-feldspar rate: * # KINETICS 1 * # K-feldspar * # -m0 2.16 # 10% K-fsp, 0.1 mm cubes * # -m 1.94 * # -parms 1.36e4 0.1 * * K-feldspar * -start * 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s * 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) * 3 rem parm(2) = corrects for field rate relative to lab rate * 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) * * 10 dif_temp = 1/TK - 1/298 * 20 pk_H = 12.5 + 3134 * dif_temp * 30 pk_w = 15.3 + 1838 * dif_temp * 40 pk_OH = 14.2 + 3134 * dif_temp * 50 pk_CO2 = 14.6 + 1677 * dif_temp * #60 pk_org = 13.9 + 1254 * dif_temp # rate increase with DOC * 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 * 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 * #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 * 80 moles = parm(1) * parm(2) * rate * (1 - SR("K-feldspar")) * time * 81 rem decrease rate on precipitation * 90 if SR("K-feldspar") > 1 then moles = moles * 0.1 * 100 save moles * -end * * ########### * #Albite * ########### * # * # Sverdrup, H.U., 1990, The kinetics of base cation release due to * # chemical weathering: Lund University Press, Lund, 246 p. * # * # Example of KINETICS data block for Albite rate: * # KINETICS 1 * # Albite * # -m0 0.43 # 2% Albite, 0.1 mm cubes * # -parms 2.72e3 0.1 * * Albite * -start * 1 rem specific rate from Sverdrup, 1990, in kmol/m2/s * 2 rem parm(1) = 10 * (A/V, 1/dm) (recalc's sp. rate to mol/kgw) * 3 rem parm(2) = corrects for field rate relative to lab rate * 4 rem temp corr: from p. 162. E (kJ/mol) / R / 2.303 = H in H*(1/T-1/298) * * 10 dif_temp = 1/TK - 1/298 * 20 pk_H = 12.5 + 3359 * dif_temp * 30 pk_w = 14.8 + 2648 * dif_temp * 40 pk_OH = 13.7 + 3359 * dif_temp * #41 rem ^12.9 in Sverdrup, but larger than for oligoclase... * 50 pk_CO2 = 14.0 + 1677 * dif_temp * #60 pk_org = 12.5 + 1254 * dif_temp # ...rate increase for DOC * 70 rate = 10^-pk_H * ACT("H+")^0.5 + 10^-pk_w + 10^-pk_OH * ACT("OH-")^0.3 * 71 rate = rate + 10^-pk_CO2 * (10^SI("CO2(g)"))^0.6 * #72 rate = rate + 10^-pk_org * TOT("Doc")^0.4 * 80 moles = parm(1) * parm(2) * rate * (1 - SR("Albite")) * time * 81 rem decrease rate on precipitation * 90 if SR("Albite") > 1 then moles = moles * 0.1 * 100 save moles * -end * * ######## * #Calcite * ######## * # * # Plummer, L.N., Wigley, T.M.L., and Parkhurst, D.L., 1978, * # American Journal of Science, v. 278, p. 179-216. * # * # Example of KINETICS data block for calcite rate: * # * # KINETICS 1 * # Calcite * # -tol 1e-8 * # -m0 3.e-3 * # -m 3.e-3 * # -parms 5.0 0.6 * Calcite * -start * 1 REM Modified from Plummer and others, 1978 * 2 REM M = current moles of calcite * 3 REM M0 = initial moles of calcite * 4 REM parm(1) = Area/Volume, cm^2/L (or cm^2 per cell) * 5 REM parm(2) = exponent for M/M0 for surface area correction * 10 REM rate = 0 if no calcite and undersaturated * 20 si_cc = SI("Calcite") * 30 if (M <= 0 and si_cc < 0) then goto 300 * 40 k1 = 10^(0.198 - 444.0 / TK ) * 50 k2 = 10^(2.84 - 2177.0 / TK ) * 60 if TC <= 25 then k3 = 10^(-5.86 - 317.0 / TK ) * 70 if TC > 25 then k3 = 10^(-1.1 - 1737.0 / TK ) * 80 REM surface area calculation * 90 t = 1 * 100 if M0 > 0 then t = M/M0 * 110 if t = 0 then t = 1 * 120 area = PARM(1) * (t)^PARM(2) * 130 rf = k1 * ACT("H+") + k2 * ACT("CO2") + k3 * ACT("H2O") * 140 REM 1e-3 converts mmol to mol * 150 rate = area * 1e-3 * rf * (1 - 10^(2/3*si_cc)) * 160 moles = rate * TIME * 170 REM do not dissolve more calcite than present * 180 if (moles > M) then moles = M * 190 if (moles >= 0) then goto 300 * 200 REM do not precipitate more Ca or C(4) than present * 210 temp = TOT("Ca") * 220 mc = TOT("C(4)") * 230 if mc < temp then temp = mc * 240 if -moles > temp then moles = -temp * 300 SAVE moles * -end * * ####### * #Pyrite * ####### * # * # Williamson, M.A. and Rimstidt, J.D., 1994, * # Geochimica et Cosmochimica Acta, v. 58, p. 5443-5454. * # * # Example of KINETICS data block for pyrite rate: * # KINETICS 1 * # Pyrite * # -tol 1e-8 * # -m0 5.e-4 * # -m 5.e-4 * # -parms 2.0 0.67 .5 -0.11 * Pyrite * -start * 1 rem Williamson and Rimstidt, 1994 * 2 rem parm(1) = log10(A/V, 1/dm) parm(2) = exp for (m/m0) * 3 rem parm(3) = exp for O2 parm(4) = exp for H+ * * 10 if (m <= 0) then goto 200 * 20 if (si("Pyrite") >= 0) then goto 200 * 20 rate = -10.19 + parm(1) + parm(3)*lm("O2") + parm(4)*lm("H+") + parm(2)*log10(m/m0) * 30 moles = 10^rate * time * 40 if (moles > m) then moles = m * 200 save moles * -end * * ########## * #Organic_C * ########## * # * # Example of KINETICS data block for Organic_C rate: * # KINETICS 1 * # Organic_C * # -tol 1e-8 * # # m in mol/kgw * # -m0 5e-3 * # -m 5e-3 * Organic_C * -start * 1 rem Additive Monod kinetics * 2 rem Electron acceptors: O2, NO3, and SO4 * * 10 if (m <= 0) then goto 200 * 20 mO2 = mol("O2") * 30 mNO3 = tot("N(5)") * 40 mSO4 = tot("S(6)") * 50 rate = 1.57e-9*mO2/(2.94e-4 + mO2) + 1.67e-11*mNO3/(1.55e-4 + mNO3) * 60 rate = rate + 1.e-13*mSO4/(1.e-4 + mSO4) * 70 moles = rate * m * (m/m0) * time * 80 if (moles > m) then moles = m * 200 save moles * -end * * ########### * #Pyrolusite * ########### * # * # Postma, D. and Appelo, C.A.J., 2000, GCA 64, in press * # * # Example of KINETICS data block for Pyrolusite * # KINETICS 1-12 * # Pyrolusite * # -tol 1.e-7 * # -m0 0.1 * # -m 0.1 * Pyrolusite * -start * 5 if (m <= 0.0) then goto 200 * 7 sr_pl = sr("Pyrolusite") * 9 if abs(1 - sr_pl) < 0.1 then goto 200 * 10 if (sr_pl > 1.0) then goto 100 * #20 rem initially 1 mol Fe+2 = 0.5 mol pyrolusite. k*A/V = 1/time (3 cells) * #22 rem time (3 cells) = 1.432e4. 1/time = 6.98e-5 * 30 Fe_t = tot("Fe(2)") * 32 if Fe_t < 1.e-8 then goto 200 * 40 moles = 6.98e-5 * Fe_t * (m/m0)^0.67 * time * (1 - sr_pl) * 50 if moles > Fe_t / 2 then moles = Fe_t / 2 * 70 if moles > m then moles = m * 90 goto 200 * 100 Mn_t = tot("Mn") * 110 moles = 2e-3 * 6.98e-5 * (1-sr_pl) * time * 120 if moles <= -Mn_t then moles = -Mn_t * 200 save moles * -end * END * * ****************************** end phreeqc.dat